Engineering Protein-Based Lipid-Binding Nanovesicles via Catechol-Amine-Derived Coacervation with Their Underlying Interfacial Mechanisms

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Langmuir Pub Date : 2025-02-02 DOI:10.1021/acs.langmuir.4c03941
Haibing Yang, Yao Song, Qiang Zhang, Moran Wang, Tianqi Jia, Qing Pan, Kanda Sun, Xiang Guan, Mingfei Pan, Feng Chen, Bin Yan
{"title":"Engineering Protein-Based Lipid-Binding Nanovesicles via Catechol-Amine-Derived Coacervation with Their Underlying Interfacial Mechanisms","authors":"Haibing Yang, Yao Song, Qiang Zhang, Moran Wang, Tianqi Jia, Qing Pan, Kanda Sun, Xiang Guan, Mingfei Pan, Feng Chen, Bin Yan","doi":"10.1021/acs.langmuir.4c03941","DOIUrl":null,"url":null,"abstract":"The development of nonphospholipid nanovesicles has garnered tremendous attention as a viable alternative to traditional liposomal nanovesicles. Protein/peptide-based nanovesicles have demonstrated their potential to reduce immunogenicity while enhancing bioactivity. However, a fundamental understanding of how proteinaceous vesicles interact with lipids and cell membranes remains elusive. In this study, we engineered a series of protamine-based nonphospholipid nanovesicles by modulating intramolecular catechol–amine interactions. By grafting trihydroxybenzene (GA) and catechol (CA) groups onto the protamine (Prot), a salt-triggered coacervation was observed in an alkaline environment with the size of as-prepared vesicles ranging from 200 to 1200 nm. The bonding affinity to lipid interfaces followed the order of Prot-CA-Fe<sup>3+</sup>(25 μM) &gt; Prot-CA-Fe<sup>3+</sup>(10 μM) &gt; Prot-CA &gt; original Prot with the underlying nanomechanics investigated by the lipid bubble force measurement. Direct quantification of interactions between the nanovesicles and living human gingival fibroblasts was performed by using surface charge difference mapping. Introducing trace amounts of Fe<sup>3+</sup> (at 10 and 25 μM) enhanced vesicle–lipid interactions via the synergy of catechol–amine interactions and Fe<sup>3+</sup>-induced complexation. This work provides improved valuable insights into the interactions between nanovesicles and cell membranes, offering an energetic paradigm for modulating cell-target delivery processes via intramolecular short-range interactions.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"13 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03941","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of nonphospholipid nanovesicles has garnered tremendous attention as a viable alternative to traditional liposomal nanovesicles. Protein/peptide-based nanovesicles have demonstrated their potential to reduce immunogenicity while enhancing bioactivity. However, a fundamental understanding of how proteinaceous vesicles interact with lipids and cell membranes remains elusive. In this study, we engineered a series of protamine-based nonphospholipid nanovesicles by modulating intramolecular catechol–amine interactions. By grafting trihydroxybenzene (GA) and catechol (CA) groups onto the protamine (Prot), a salt-triggered coacervation was observed in an alkaline environment with the size of as-prepared vesicles ranging from 200 to 1200 nm. The bonding affinity to lipid interfaces followed the order of Prot-CA-Fe3+(25 μM) > Prot-CA-Fe3+(10 μM) > Prot-CA > original Prot with the underlying nanomechanics investigated by the lipid bubble force measurement. Direct quantification of interactions between the nanovesicles and living human gingival fibroblasts was performed by using surface charge difference mapping. Introducing trace amounts of Fe3+ (at 10 and 25 μM) enhanced vesicle–lipid interactions via the synergy of catechol–amine interactions and Fe3+-induced complexation. This work provides improved valuable insights into the interactions between nanovesicles and cell membranes, offering an energetic paradigm for modulating cell-target delivery processes via intramolecular short-range interactions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过儿茶酚--氨产生的共凝作用及其潜在的界面机制设计蛋白型脂质结合纳米囊泡
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
期刊最新文献
Regulation of Water Molecule Filling in Carbon Nanochannels via Oxidation Substitution of Alkylphenol Polyoxyethylene Ethers with Bio-Based Surfactants: Their Synthesis, Properties, and Performance Evaluation Insights into Transient Dynamics of Bacteria-Laden Liquid Bridges Synthetic Strategies for Multihollow Polymer Particles Role of Hydrazine and Size-Tuning Parameter in Gold Nanoparticle Synthesis by Water-in-Oil Microemulsion: Experiment and Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1