Submarine gravity flows and their interaction with offshore pipelines: A review of recent advances

IF 6.9 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Engineering Geology Pub Date : 2025-01-21 DOI:10.1016/j.enggeo.2025.107914
Zhiguo He , Samuel Ukpong Okon , Peng Hu , Haoyang Zhang , Ita Ewa-Oboho , Qian Li
{"title":"Submarine gravity flows and their interaction with offshore pipelines: A review of recent advances","authors":"Zhiguo He ,&nbsp;Samuel Ukpong Okon ,&nbsp;Peng Hu ,&nbsp;Haoyang Zhang ,&nbsp;Ita Ewa-Oboho ,&nbsp;Qian Li","doi":"10.1016/j.enggeo.2025.107914","DOIUrl":null,"url":null,"abstract":"<div><div>The increase in offshore exploration for oil and natural gas has raised concerns about the safety of pipelines in the face of submarine slides, debris flow, and high-density turbidity currents. These submarine gravity flows constitute significant marine geohazards as they undermine the structural integrity of offshore pipelines, underscoring the importance of understanding the complexities of the dynamic interaction process. We herein present a comprehensive review of the complex interactions between submarine gravity flows and offshore pipelines. Emphasis is on the influence of pipeline characteristics, environmental factors, and flow properties on the impact force exerted on the offshore pipeline and the overall interaction process. Recent literature indicates that implementing modified pipeline designs, such as streamlined shapes and advanced design materials, can effectively minimize drag and lift forces, thus potentially reducing the risk of damage by submarine gravity flows. This underscores the need to combine sophisticated engineering designs and durable materials to protect offshore pipelines. This paper provides an in-depth understanding of the interaction between submarine gravity flows and pipeline infrastructures, suggesting the implementation of real-time monitoring technologies, novel pipeline materials, and the adoption of innovative designs that can withstand adverse seafloor environments and effectively mitigate the risk of sediment-induced damage in landslide-prone regions. The article summarizes existing knowledge on mitigative technologies and recommends areas for further investigation to improve the safety and durability of submarine pipelines.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"347 ","pages":"Article 107914"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795225000109","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The increase in offshore exploration for oil and natural gas has raised concerns about the safety of pipelines in the face of submarine slides, debris flow, and high-density turbidity currents. These submarine gravity flows constitute significant marine geohazards as they undermine the structural integrity of offshore pipelines, underscoring the importance of understanding the complexities of the dynamic interaction process. We herein present a comprehensive review of the complex interactions between submarine gravity flows and offshore pipelines. Emphasis is on the influence of pipeline characteristics, environmental factors, and flow properties on the impact force exerted on the offshore pipeline and the overall interaction process. Recent literature indicates that implementing modified pipeline designs, such as streamlined shapes and advanced design materials, can effectively minimize drag and lift forces, thus potentially reducing the risk of damage by submarine gravity flows. This underscores the need to combine sophisticated engineering designs and durable materials to protect offshore pipelines. This paper provides an in-depth understanding of the interaction between submarine gravity flows and pipeline infrastructures, suggesting the implementation of real-time monitoring technologies, novel pipeline materials, and the adoption of innovative designs that can withstand adverse seafloor environments and effectively mitigate the risk of sediment-induced damage in landslide-prone regions. The article summarizes existing knowledge on mitigative technologies and recommends areas for further investigation to improve the safety and durability of submarine pipelines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Geology
Engineering Geology 地学-地球科学综合
CiteScore
13.70
自引率
12.20%
发文量
327
审稿时长
5.6 months
期刊介绍: Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.
期刊最新文献
Investigation of morphological features and mechanical behavior of jointed limestone subjected to wet-dry cycles and cyclic shear in drawdown areas of the Three Gorges Reservoir Efficient probabilistic tunning of large geological model (LGM) for underground digital twin Flash flood impacts and vulnerability mapping at catchment scale: Insights from southern Apennines The mechanisms of salt weathering responsible for sandstone deterioration in the Yungang Grottoes, China Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1