P.E. Augusseau , C. Proisy , A. Gardel , G. Brunier , L. Granjon , T. Maury , A. Mury , A. Staquet , V.F. Santos , R. Walcker , P. Degenne , D. Lo Seen , E.J. Anthony
{"title":"MANG@COAST: A spatio-temporal modeling approach of muddy shoreline mobility based on mangrove monitoring","authors":"P.E. Augusseau , C. Proisy , A. Gardel , G. Brunier , L. Granjon , T. Maury , A. Mury , A. Staquet , V.F. Santos , R. Walcker , P. Degenne , D. Lo Seen , E.J. Anthony","doi":"10.1016/j.envsoft.2025.106345","DOIUrl":null,"url":null,"abstract":"<div><div>Highly dynamic wave-exposed muddy coasts harbouring mangrove ecosystems can be subject to both marked accretion and erosion depending on the complex interactions between mud and waves. We propose a multiscale modelling approach and empirical equations calibrated and integrated into a landscape dynamics model implemented on a mud-bank coast using the Ocelet language to simplify the complex processes driving sea-mangrove coastline dynamics and quantity them with 10 years of satellite observations of mangrove shoreline fluctuations.</div><div>We find that fluctuations in seafront mangroves can be simulated with acceptable accuracy along 200 km of coastline. In the absence of mud banks, seasonal wave forcing resulted in erosion rates reaching 1100 m/y. Our findings indicate that wave energy can be reduced by 90% at all locations when the width of mud banks exceeds 2000 m in front of the mangroves. Finally, we discuss the potential of this modeling approach for anticipating coastal changes.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"186 ","pages":"Article 106345"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225000295","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Highly dynamic wave-exposed muddy coasts harbouring mangrove ecosystems can be subject to both marked accretion and erosion depending on the complex interactions between mud and waves. We propose a multiscale modelling approach and empirical equations calibrated and integrated into a landscape dynamics model implemented on a mud-bank coast using the Ocelet language to simplify the complex processes driving sea-mangrove coastline dynamics and quantity them with 10 years of satellite observations of mangrove shoreline fluctuations.
We find that fluctuations in seafront mangroves can be simulated with acceptable accuracy along 200 km of coastline. In the absence of mud banks, seasonal wave forcing resulted in erosion rates reaching 1100 m/y. Our findings indicate that wave energy can be reduced by 90% at all locations when the width of mud banks exceeds 2000 m in front of the mangroves. Finally, we discuss the potential of this modeling approach for anticipating coastal changes.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.