Pedro Barbosa , Ivone Amorim , Eva Maia , Isabel Praça
{"title":"ENNigma: A framework for Private Neural Networks","authors":"Pedro Barbosa , Ivone Amorim , Eva Maia , Isabel Praça","doi":"10.1016/j.future.2025.107719","DOIUrl":null,"url":null,"abstract":"<div><div>The widespread use of the Internet and digital services has significantly increased data collection and processing. Critical domains like healthcare rely on this data, but privacy and security concerns limit its usability, constraining the performance of intelligent systems, particularly those leveraging Neural Networks (NNs). NNs require high-quality data for optimal performance, but existing privacy-preserving methods, such as Federated Learning and Differential Privacy, often degrade model accuracy. While Homomorphic Encryption (HE) has emerged as a promising alternative, existing HE-based methods face challenges in computational efficiency and scalability, limiting their real-world application.</div><div>To address these issues, we introduce ENNigma, a novel framework employing state-of-the-art Fully Homomorphic Encryption techniques. This framework introduces optimizations that significantly improve the speed and accuracy of encrypted NN operations. Experiments conducted using the CIC-DDoS2019 dataset — a benchmark for Distributed Denial of Service attack detection — demonstrate ENNigma’s effectiveness. A classification performance with a maximum relative error of 1.01% was achieved compared to non-private models, while reducing multiplication time by up to 59% compared to existing FHE-based approaches. These results highlight ENNigma’s potential for practical, privacy-preserving neural network applications.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"166 ","pages":"Article 107719"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25000147","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The widespread use of the Internet and digital services has significantly increased data collection and processing. Critical domains like healthcare rely on this data, but privacy and security concerns limit its usability, constraining the performance of intelligent systems, particularly those leveraging Neural Networks (NNs). NNs require high-quality data for optimal performance, but existing privacy-preserving methods, such as Federated Learning and Differential Privacy, often degrade model accuracy. While Homomorphic Encryption (HE) has emerged as a promising alternative, existing HE-based methods face challenges in computational efficiency and scalability, limiting their real-world application.
To address these issues, we introduce ENNigma, a novel framework employing state-of-the-art Fully Homomorphic Encryption techniques. This framework introduces optimizations that significantly improve the speed and accuracy of encrypted NN operations. Experiments conducted using the CIC-DDoS2019 dataset — a benchmark for Distributed Denial of Service attack detection — demonstrate ENNigma’s effectiveness. A classification performance with a maximum relative error of 1.01% was achieved compared to non-private models, while reducing multiplication time by up to 59% compared to existing FHE-based approaches. These results highlight ENNigma’s potential for practical, privacy-preserving neural network applications.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.