{"title":"Enzymatically Covalent and Noncovalent Weaving toward Highly Efficient Synthesis of 2D Monolayered Molecular Fabrics.","authors":"Zhenzhu Wang, Yunpeng Ge, Wencan Li, Chenyang Zhang, Zeyuan Dong","doi":"10.1021/acsmacrolett.5c00017","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular fabrics with fascinating physical characteristics, such as structural flexibility and single-layered thinness, have attracted much attention. Chemists worldwide have been working on building unique molecularly woven structures in two dimensions. However, the synthesis of two-dimensional molecular weaving remains a challenging task, especially in water. Herein, we propose a straightforward and practical method to construct 2D molecular fabrics by enzymatically covalent and noncovalent syntheses in water. In particular, aromatic helical pentamers with two-terminal tyrosine residues (<b>Penta-Tyr</b>) can spontaneously dimerize via π-π interactions into double-helical interlocking structure, and the two-terminal tyrosine moieties of <b>Penta-Tyr</b> can undergo oxidative polymerization catalyzed by horseradish peroxidase (HRP) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) for effective covalent cross-linking. The 2D monolayered molecular fabrics can be readily prepared by the catalysis of HRP and H<sub>2</sub>O<sub>2</sub> under mild conditions, which exhibit concentration-dependent weaving behavior. This work not only demonstrates an enzyme-catalyzed approach for the highly efficient synthesis of 2D monolayered molecular fabrics for the first time but also will promote the controllable preparation and application of water-soluble 2D molecular fabrics.</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":" ","pages":"201-206"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmacrolett.5c00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular fabrics with fascinating physical characteristics, such as structural flexibility and single-layered thinness, have attracted much attention. Chemists worldwide have been working on building unique molecularly woven structures in two dimensions. However, the synthesis of two-dimensional molecular weaving remains a challenging task, especially in water. Herein, we propose a straightforward and practical method to construct 2D molecular fabrics by enzymatically covalent and noncovalent syntheses in water. In particular, aromatic helical pentamers with two-terminal tyrosine residues (Penta-Tyr) can spontaneously dimerize via π-π interactions into double-helical interlocking structure, and the two-terminal tyrosine moieties of Penta-Tyr can undergo oxidative polymerization catalyzed by horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for effective covalent cross-linking. The 2D monolayered molecular fabrics can be readily prepared by the catalysis of HRP and H2O2 under mild conditions, which exhibit concentration-dependent weaving behavior. This work not only demonstrates an enzyme-catalyzed approach for the highly efficient synthesis of 2D monolayered molecular fabrics for the first time but also will promote the controllable preparation and application of water-soluble 2D molecular fabrics.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.