Thinh T M Bui, Hyejin Ko, Soohyun Um, Hyeongju Jeong, Suk Woo Kang, Hasun Kim, Dae-Geun Song, Sang Hoon Jung, Kyuho Moon
{"title":"Discovery of Dual ROCK1/2 Inhibitors from <i>Nocardiopsis</i> sp. under Metal Stress.","authors":"Thinh T M Bui, Hyejin Ko, Soohyun Um, Hyeongju Jeong, Suk Woo Kang, Hasun Kim, Dae-Geun Song, Sang Hoon Jung, Kyuho Moon","doi":"10.1021/acschembio.4c00736","DOIUrl":null,"url":null,"abstract":"<p><p>Rho-associated protein kinase (ROCK) inhibitors are promising therapeutic agents for reducing elevated intraocular pressure in patients with glaucoma. We explored new ROCK inhibitors derived from bioactive metabolites produced by microbes, specifically cryptic metabolites from <i>Nocardiopsis</i> sp. MCY7, using a liquid chromatography-mass spectrometry-based chemical analysis approach integrated with metal stress-driven isolation. This strategy led to the identification of two previously undescribed linear peptides, nocarnickelamides A and B (<b>1</b> and <b>2</b>), and an unreported cittilin derivative, cittilin C (<b>3</b>). The planar structures of <b>1</b>-<b>3</b> were elucidated using UV spectroscopy, high-resolution mass spectrometry, and nuclear magnetic resonance. The absolute configurations of <b>1</b> and <b>2</b> were assigned using the advanced Marfey's method. Biological assays demonstrated that nocarnickelamides (<b>1</b> and <b>2</b>) exhibited dual inhibitory activity against ROCK1 (IC<sub>50</sub> 29.8 and 14.9 μM, respectively) and ROCK2 (IC<sub>50</sub> 27.0 and 21.9 μM, respectively), with molecular simulations suggesting binding to the ATP-binding site. In human trabecular meshwork cells, <b>2</b> significantly inhibited the activation of ROCK-regulated cytoskeletal contraction markers such as the myosin light chain. Nocarnickelamide B (<b>2</b>) is a novel dual ROCK1/2 inhibitor and a potential pharmacophore for designing new therapeutic agents to reduce intraocular pressure in glaucoma.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00736","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rho-associated protein kinase (ROCK) inhibitors are promising therapeutic agents for reducing elevated intraocular pressure in patients with glaucoma. We explored new ROCK inhibitors derived from bioactive metabolites produced by microbes, specifically cryptic metabolites from Nocardiopsis sp. MCY7, using a liquid chromatography-mass spectrometry-based chemical analysis approach integrated with metal stress-driven isolation. This strategy led to the identification of two previously undescribed linear peptides, nocarnickelamides A and B (1 and 2), and an unreported cittilin derivative, cittilin C (3). The planar structures of 1-3 were elucidated using UV spectroscopy, high-resolution mass spectrometry, and nuclear magnetic resonance. The absolute configurations of 1 and 2 were assigned using the advanced Marfey's method. Biological assays demonstrated that nocarnickelamides (1 and 2) exhibited dual inhibitory activity against ROCK1 (IC50 29.8 and 14.9 μM, respectively) and ROCK2 (IC50 27.0 and 21.9 μM, respectively), with molecular simulations suggesting binding to the ATP-binding site. In human trabecular meshwork cells, 2 significantly inhibited the activation of ROCK-regulated cytoskeletal contraction markers such as the myosin light chain. Nocarnickelamide B (2) is a novel dual ROCK1/2 inhibitor and a potential pharmacophore for designing new therapeutic agents to reduce intraocular pressure in glaucoma.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.