{"title":"Nucleolus-Targeting Carbon Dot Nanocomplexes for Combined Photodynamic/Photothermal Therapy.","authors":"Shaofang Ma, Yan Zhang, Zihan Zhu, Deping Wang, Xin Zhou, Jing Wang, Wei Bian, Xinjing Tang","doi":"10.1021/acs.molpharmaceut.4c01211","DOIUrl":null,"url":null,"abstract":"<p><p>The low cure rate and high mortality associated with cancer pose significant threats to human health. Photodynamic and photothermal therapies have emerged as promising treatment strategies for various types of cancers. In this study, we successfully synthesized a novel type of carbon dot (CD) using 1,2,4-aminobenzene and ethylenediamine as precursors. Surprisingly, these CDs exhibited outstanding nucleolus-targeting capabilities coupled with a remarkable photothermal effect. Through the integration of these nucleolus-targeting CDs with indocyanine green (ICG) and folic acid (FA), we created CDs-ICG-FA nanocomplexes suitable for combined photodynamic and photothermal therapy. In vitro experiments demonstrated that CDs-ICG-FA maintained a robust photothermal ability, achieving a conversion efficiency of up to 34.3%. Furthermore, CDs-ICG-FA generated abundant reactive oxygen species, effectively inducing cancer cell death and demonstrating its potential for photodynamic therapy. In MCF-7 cancer cells, CDs-ICG-FA exhibited a pronounced synergistic photothermal/photodynamic anticancer effect. Subsequent in vivo experiments in mice revealed that CDs-ICG-FA could selectively accumulate at tumor sites, significantly inhibiting tumor growth upon exposure to an 808 nm laser. These findings suggest that the developed nucleolus-targeting CDs-ICG-FA hold promising potential for cancer targeting and the application of combined photothermal/photodynamic therapy.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":"22 2","pages":"958-971"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01211","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The low cure rate and high mortality associated with cancer pose significant threats to human health. Photodynamic and photothermal therapies have emerged as promising treatment strategies for various types of cancers. In this study, we successfully synthesized a novel type of carbon dot (CD) using 1,2,4-aminobenzene and ethylenediamine as precursors. Surprisingly, these CDs exhibited outstanding nucleolus-targeting capabilities coupled with a remarkable photothermal effect. Through the integration of these nucleolus-targeting CDs with indocyanine green (ICG) and folic acid (FA), we created CDs-ICG-FA nanocomplexes suitable for combined photodynamic and photothermal therapy. In vitro experiments demonstrated that CDs-ICG-FA maintained a robust photothermal ability, achieving a conversion efficiency of up to 34.3%. Furthermore, CDs-ICG-FA generated abundant reactive oxygen species, effectively inducing cancer cell death and demonstrating its potential for photodynamic therapy. In MCF-7 cancer cells, CDs-ICG-FA exhibited a pronounced synergistic photothermal/photodynamic anticancer effect. Subsequent in vivo experiments in mice revealed that CDs-ICG-FA could selectively accumulate at tumor sites, significantly inhibiting tumor growth upon exposure to an 808 nm laser. These findings suggest that the developed nucleolus-targeting CDs-ICG-FA hold promising potential for cancer targeting and the application of combined photothermal/photodynamic therapy.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.