Innovative approaches to enhancing kombucha through flavour additives: a phytochemical and antioxidant analysis.

IF 5.1 1区 农林科学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Food & Function Pub Date : 2025-02-03 DOI:10.1039/d4fo05135a
Karolina Jakubczyk, Klaudia Melkis, Dominika Maciejewska-Markiewicz, Anna Muzykiewicz-Szymańska, Anna Nowak, Karolina Skonieczna-Żydecka
{"title":"Innovative approaches to enhancing kombucha through flavour additives: a phytochemical and antioxidant analysis.","authors":"Karolina Jakubczyk, Klaudia Melkis, Dominika Maciejewska-Markiewicz, Anna Muzykiewicz-Szymańska, Anna Nowak, Karolina Skonieczna-Żydecka","doi":"10.1039/d4fo05135a","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to determine the phytochemical profile (flavonoids, phenolic acids, caffeine, vitamin C, and acetic acid), antioxidant potential (DPPH, ABTS, and FRAP method), total polyphenol (TPC) and flavonoid (TFC) content, as well as pH of eight commercial green tea-based kombuchas. The beverages were enriched with lemongrass; lavender; liquorice and mint; turmeric and lemon; mango; reishi and chaga; mint, rose, and pomegranate. The highest tested properties were found for kombucha with reishi and chaga (FRAP), with mint, rose, and pomegranate (ABTS), as well as with turmeric and lemon (DPPH, TPC, TFC). Among the identified phenolic acids, <i>p</i>-coumaric acid was found in the highest concentration (kombucha with reishi and chaga), while among the flavonoids - rutin (kombucha with liquorice and mint). Kombucha with reishi and chaga was the richest source of vitamin C, caffeine, and acetic acid. The addition of certain plant materials significantly affects the phytonutrient content of green tea-based kombucha.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1039/d4fo05135a","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to determine the phytochemical profile (flavonoids, phenolic acids, caffeine, vitamin C, and acetic acid), antioxidant potential (DPPH, ABTS, and FRAP method), total polyphenol (TPC) and flavonoid (TFC) content, as well as pH of eight commercial green tea-based kombuchas. The beverages were enriched with lemongrass; lavender; liquorice and mint; turmeric and lemon; mango; reishi and chaga; mint, rose, and pomegranate. The highest tested properties were found for kombucha with reishi and chaga (FRAP), with mint, rose, and pomegranate (ABTS), as well as with turmeric and lemon (DPPH, TPC, TFC). Among the identified phenolic acids, p-coumaric acid was found in the highest concentration (kombucha with reishi and chaga), while among the flavonoids - rutin (kombucha with liquorice and mint). Kombucha with reishi and chaga was the richest source of vitamin C, caffeine, and acetic acid. The addition of certain plant materials significantly affects the phytonutrient content of green tea-based kombucha.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Food & Function
Food & Function BIOCHEMISTRY & MOLECULAR BIOLOGY-FOOD SCIENCE & TECHNOLOGY
CiteScore
10.10
自引率
6.60%
发文量
957
审稿时长
1.8 months
期刊介绍: Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.
期刊最新文献
Rice bran peptides target lectin-like oxidized low-density lipoprotein receptor-1 to ameliorate atherosclerosis. A review of the role of bioactive components in legumes in the prevention and treatment of cardiovascular diseases. A plant-based diet index and all-cause and cause-specific mortality: a prospective study. Modification of Ganoderma lucidum spore shells into probiotic carriers: selective loading and colonic delivery of Lacticaseibacillus rhamnosus and effective therapy of inflammatory bowel disease. Monascus pilosus SWM-008 red mold rice and its components, monascinol and monascin, reduce obesity in a high-fat diet-induced rat model through synergistic modulation of gut microbiota and anti-lipogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1