Novel calibration approach for particle size analysis of microplastics by laser ablation single particle-ICP-MS.

IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL Journal of Analytical Atomic Spectrometry Pub Date : 2025-01-27 DOI:10.1039/d4ja00351a
Lukas Brunnbauer, Laura Kronlachner, Elias Foisner, Andreas Limbeck
{"title":"Novel calibration approach for particle size analysis of microplastics by laser ablation single particle-ICP-MS.","authors":"Lukas Brunnbauer, Laura Kronlachner, Elias Foisner, Andreas Limbeck","doi":"10.1039/d4ja00351a","DOIUrl":null,"url":null,"abstract":"<p><p>The need to analyze and characterize microplastics (MPs) is ever-increasing to monitor and understand their environmental impact. In this work, a developed calibration approach that utilizes an in-house-created polystyrene (PS) thin film for the sizing of MPs is presented, circumventing the need for certified particulate standard material. LA was used for sampling and transporting intact MPs of different sizes and polymer types to the ICP-MS. For the calibration, defined amounts of carbon were introduced into the ICP-MS by quantitatively ablating a polymer thin film with different laser spot sizes. With this approach, a LOD of 4.85 pg carbon was obtained, which translates to a size of 2.12 μm for spheric PS particles. The calibration using PS thin film was successfully applied to sampled PS MPs and allowed accurate sizing of 2 μm, 3 μm, and 4.5 μm particles. When using the PS calibration for determining polyvinyl chloride (PVC) and poly(methyl methacrylate) (PMMA) particle sizes, a good estimate of the size could be achieved despite the different compositions of the polymers. This indicates the universal applicability of the presented approach. The investigation of the transport efficiency showed that it is mainly influenced by particle size, and factors such as the polymer type and length of the transport line and carrier gas. Under optimum conditions, up to 95% of the sampled particles were detected.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783204/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Atomic Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ja00351a","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The need to analyze and characterize microplastics (MPs) is ever-increasing to monitor and understand their environmental impact. In this work, a developed calibration approach that utilizes an in-house-created polystyrene (PS) thin film for the sizing of MPs is presented, circumventing the need for certified particulate standard material. LA was used for sampling and transporting intact MPs of different sizes and polymer types to the ICP-MS. For the calibration, defined amounts of carbon were introduced into the ICP-MS by quantitatively ablating a polymer thin film with different laser spot sizes. With this approach, a LOD of 4.85 pg carbon was obtained, which translates to a size of 2.12 μm for spheric PS particles. The calibration using PS thin film was successfully applied to sampled PS MPs and allowed accurate sizing of 2 μm, 3 μm, and 4.5 μm particles. When using the PS calibration for determining polyvinyl chloride (PVC) and poly(methyl methacrylate) (PMMA) particle sizes, a good estimate of the size could be achieved despite the different compositions of the polymers. This indicates the universal applicability of the presented approach. The investigation of the transport efficiency showed that it is mainly influenced by particle size, and factors such as the polymer type and length of the transport line and carrier gas. Under optimum conditions, up to 95% of the sampled particles were detected.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
26.50%
发文量
228
审稿时长
1.7 months
期刊介绍: Innovative research on the fundamental theory and application of spectrometric techniques.
期刊最新文献
Novel calibration approach for particle size analysis of microplastics by laser ablation single particle-ICP-MS. Back cover Atomic spectrometry update – a review of advances in environmental analysis High-precision coal classification using laser-induced breakdown spectroscopy (LIBS) coupled with the CST-PCA-based ISSA-KELM Ultra-trace elemental determination of Si by means of graphite furnace-atomic absorption spectrometry†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1