Comparative Analysis of Data-Driven Rescoring Platforms for Improved Peptide Identification in HeLa Digest Samples.

IF 3.4 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Proteomics Pub Date : 2025-02-02 DOI:10.1002/pmic.202400225
Jesus D Castaño, Francis Beaudry
{"title":"Comparative Analysis of Data-Driven Rescoring Platforms for Improved Peptide Identification in HeLa Digest Samples.","authors":"Jesus D Castaño, Francis Beaudry","doi":"10.1002/pmic.202400225","DOIUrl":null,"url":null,"abstract":"<p><p>Mass spectrometry is a critical tool to understand complex changes in biological processes. Despite significant advances in search engine technology, many spectra remain unassigned. This research evaluates the performance of three rescoring platforms, Oktoberfest, MS<sup>2</sup>Rescore, and inSPIRE, using MaxQuant output. The results indicated a substantial increase in identifications at the peptide level (40%-53%) and PSM level (64%-67%). However, some peptides were lost due to limitations in processing posttranslational modifications (PTMs)-with up to 75% of lost peptides exhibiting PTMs. Each platform displayed distinct strengths and weaknesses. For instance, inSPIRE performed best in terms of peptide identifications and unique peptides, while MS<sup>2</sup>Rescore performed better for PSMs at higher FDR values. Differences in platform performance stemmed from different sources: original search engine feature selection, type of ion series predicted, retention time predictor, and PTMs compatibility. Overall, inSPIRE showed a superior ability to harness original search engine results. Taken all together, rescoring platforms clearly outperformed original search results; however, they demanded additional computation time (up to 77%) and manual adjustments. The findings here underline the necessity of integrating rescoring platforms into current proteomics pipelines but also address some challenges in their implementation and optimization. Future integrated platforms may help enhance adoption.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":" ","pages":"e202400225"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pmic.202400225","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Mass spectrometry is a critical tool to understand complex changes in biological processes. Despite significant advances in search engine technology, many spectra remain unassigned. This research evaluates the performance of three rescoring platforms, Oktoberfest, MS2Rescore, and inSPIRE, using MaxQuant output. The results indicated a substantial increase in identifications at the peptide level (40%-53%) and PSM level (64%-67%). However, some peptides were lost due to limitations in processing posttranslational modifications (PTMs)-with up to 75% of lost peptides exhibiting PTMs. Each platform displayed distinct strengths and weaknesses. For instance, inSPIRE performed best in terms of peptide identifications and unique peptides, while MS2Rescore performed better for PSMs at higher FDR values. Differences in platform performance stemmed from different sources: original search engine feature selection, type of ion series predicted, retention time predictor, and PTMs compatibility. Overall, inSPIRE showed a superior ability to harness original search engine results. Taken all together, rescoring platforms clearly outperformed original search results; however, they demanded additional computation time (up to 77%) and manual adjustments. The findings here underline the necessity of integrating rescoring platforms into current proteomics pipelines but also address some challenges in their implementation and optimization. Future integrated platforms may help enhance adoption.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Proteomics
Proteomics 生物-生化研究方法
CiteScore
6.30
自引率
5.90%
发文量
193
审稿时长
3 months
期刊介绍: PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.
期刊最新文献
Front Cover Standard abbreviations Editorial Board: Proteomics 3'25 Contents: Proteomics 3'25 Comparative Analysis of Data-Driven Rescoring Platforms for Improved Peptide Identification in HeLa Digest Samples.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1