{"title":"Comparative Analysis of Data-Driven Rescoring Platforms for Improved Peptide Identification in HeLa Digest Samples.","authors":"Jesus D Castaño, Francis Beaudry","doi":"10.1002/pmic.202400225","DOIUrl":null,"url":null,"abstract":"<p><p>Mass spectrometry is a critical tool to understand complex changes in biological processes. Despite significant advances in search engine technology, many spectra remain unassigned. This research evaluates the performance of three rescoring platforms, Oktoberfest, MS<sup>2</sup>Rescore, and inSPIRE, using MaxQuant output. The results indicated a substantial increase in identifications at the peptide level (40%-53%) and PSM level (64%-67%). However, some peptides were lost due to limitations in processing posttranslational modifications (PTMs)-with up to 75% of lost peptides exhibiting PTMs. Each platform displayed distinct strengths and weaknesses. For instance, inSPIRE performed best in terms of peptide identifications and unique peptides, while MS<sup>2</sup>Rescore performed better for PSMs at higher FDR values. Differences in platform performance stemmed from different sources: original search engine feature selection, type of ion series predicted, retention time predictor, and PTMs compatibility. Overall, inSPIRE showed a superior ability to harness original search engine results. Taken all together, rescoring platforms clearly outperformed original search results; however, they demanded additional computation time (up to 77%) and manual adjustments. The findings here underline the necessity of integrating rescoring platforms into current proteomics pipelines but also address some challenges in their implementation and optimization. Future integrated platforms may help enhance adoption.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":" ","pages":"e202400225"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pmic.202400225","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Mass spectrometry is a critical tool to understand complex changes in biological processes. Despite significant advances in search engine technology, many spectra remain unassigned. This research evaluates the performance of three rescoring platforms, Oktoberfest, MS2Rescore, and inSPIRE, using MaxQuant output. The results indicated a substantial increase in identifications at the peptide level (40%-53%) and PSM level (64%-67%). However, some peptides were lost due to limitations in processing posttranslational modifications (PTMs)-with up to 75% of lost peptides exhibiting PTMs. Each platform displayed distinct strengths and weaknesses. For instance, inSPIRE performed best in terms of peptide identifications and unique peptides, while MS2Rescore performed better for PSMs at higher FDR values. Differences in platform performance stemmed from different sources: original search engine feature selection, type of ion series predicted, retention time predictor, and PTMs compatibility. Overall, inSPIRE showed a superior ability to harness original search engine results. Taken all together, rescoring platforms clearly outperformed original search results; however, they demanded additional computation time (up to 77%) and manual adjustments. The findings here underline the necessity of integrating rescoring platforms into current proteomics pipelines but also address some challenges in their implementation and optimization. Future integrated platforms may help enhance adoption.
期刊介绍:
PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.