Ali Mehrvar, Solmaz Ghanbari, Gökhan Söylemezoğlu, Umut Toprak
{"title":"Carbon Quantum Dot Nanoparticles Enhance the Efficacy of Spodoptera littoralis Nucleopolyhedrovirus Suspoemulsion","authors":"Ali Mehrvar, Solmaz Ghanbari, Gökhan Söylemezoğlu, Umut Toprak","doi":"10.1002/arch.70027","DOIUrl":null,"url":null,"abstract":"<p>This study evaluates the efficacy of Spodoptera littoralis nucleopolyhedrovirus (SpliNPV) and laboratory-synthesized carbon quantum dot nanoparticles (CQDNPs) against the second instar <i>Spodoptera littoralis</i> larvae under laboratory and greenhouse conditions. Individually, both SpliNPV and CQDNPs exhibited substantial lethality (91.6% and 83.3% at 1 × 10<sup>8</sup> OBs/ml and 700 mg/ml, respectively) (<i>p</i> < 0.05). The LC<sub>50</sub> values were 1.88 × 10<sup>5</sup> OB/ml and 434.2 mg/mL, and the LT<sub>50</sub> values were 8.9 and 9.8 days, respectively. Four LC-based combined treatments demonstrated significant additive effects, with the SpliNPV (LC<sub>50</sub>) + CQDNPs (LC<sub>25</sub>) combination achieving the optimum effect with a mortality rate of 86.3% and an LT<sub>50</sub> value of 6.6 days, leading to its selection for the suspoemulsion nanoparticle (SENP) formulation. The SENP formulation displayed superior performance, achieving the highest mortality rates and fastest killing times across all environments: 89.0% in laboratory conditions, 83.3% on eggplant plants, and 76.6% on pepper plants. In contrast, the suspoemulsion (SE) and unformulated (UF) formulations showed lower efficacy, emphasizing the importance of formulation in enhancing the biological activity of SpliNPV. The LT<sub>50</sub> values further supported these findings, with the SENP formulation demonstrating the shortest LT<sub>50</sub> values, indicating faster lethality. A significant decrease in <i>CHS-B</i>, <i>IIM2</i>, <i>PER3</i>, <i>REPAT14</i>, and <i>CDA1</i> expression was observed, particularly in the combined CQDNPs + SpliNPV treatment, while <i>API</i> expression increased significantly. These findings highlight the potential of nanoparticle-enhanced formulations like SENP, and integrating CQDNPs with SpliNPV can significantly enhance pest control efficacy.</p>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"118 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/arch.70027","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Insect Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/arch.70027","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluates the efficacy of Spodoptera littoralis nucleopolyhedrovirus (SpliNPV) and laboratory-synthesized carbon quantum dot nanoparticles (CQDNPs) against the second instar Spodoptera littoralis larvae under laboratory and greenhouse conditions. Individually, both SpliNPV and CQDNPs exhibited substantial lethality (91.6% and 83.3% at 1 × 108 OBs/ml and 700 mg/ml, respectively) (p < 0.05). The LC50 values were 1.88 × 105 OB/ml and 434.2 mg/mL, and the LT50 values were 8.9 and 9.8 days, respectively. Four LC-based combined treatments demonstrated significant additive effects, with the SpliNPV (LC50) + CQDNPs (LC25) combination achieving the optimum effect with a mortality rate of 86.3% and an LT50 value of 6.6 days, leading to its selection for the suspoemulsion nanoparticle (SENP) formulation. The SENP formulation displayed superior performance, achieving the highest mortality rates and fastest killing times across all environments: 89.0% in laboratory conditions, 83.3% on eggplant plants, and 76.6% on pepper plants. In contrast, the suspoemulsion (SE) and unformulated (UF) formulations showed lower efficacy, emphasizing the importance of formulation in enhancing the biological activity of SpliNPV. The LT50 values further supported these findings, with the SENP formulation demonstrating the shortest LT50 values, indicating faster lethality. A significant decrease in CHS-B, IIM2, PER3, REPAT14, and CDA1 expression was observed, particularly in the combined CQDNPs + SpliNPV treatment, while API expression increased significantly. These findings highlight the potential of nanoparticle-enhanced formulations like SENP, and integrating CQDNPs with SpliNPV can significantly enhance pest control efficacy.
期刊介绍:
Archives of Insect Biochemistry and Physiology is an international journal that publishes articles in English that are of interest to insect biochemists and physiologists. Generally these articles will be in, or related to, one of the following subject areas: Behavior, Bioinformatics, Carbohydrates, Cell Line Development, Cell Signalling, Development, Drug Discovery, Endocrinology, Enzymes, Lipids, Molecular Biology, Neurobiology, Nucleic Acids, Nutrition, Peptides, Pharmacology, Pollinators, Proteins, Toxicology. Archives will publish only original articles. Articles that are confirmatory in nature or deal with analytical methods previously described will not be accepted.