Evaluation of selected indigenous spices- and herbs-derived small molecules as potential inhibitors of SREBP and its implications for breast cancer using MD simulations and MMPBSA calculations.

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Molecular Diversity Pub Date : 2025-02-03 DOI:10.1007/s11030-025-11122-9
Urvashi Tiwari, Salman Akhtar, Snober S Mir, Mohammad Kalim Ahmad Khan
{"title":"Evaluation of selected indigenous spices- and herbs-derived small molecules as potential inhibitors of SREBP and its implications for breast cancer using MD simulations and MMPBSA calculations.","authors":"Urvashi Tiwari, Salman Akhtar, Snober S Mir, Mohammad Kalim Ahmad Khan","doi":"10.1007/s11030-025-11122-9","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we conducted an extensive analysis of 252 bioactive compounds derived from native spices and herbs for their potential anti-breast cancer activity against sterol regulatory element-binding protein (SREBP), using in silico techniques. To evaluate the oral bioavailability, overall pharmacokinetics, and safety profiles of these compounds, we employed Lipinski's rule of five and ADME descriptors, which depicted 66 lead molecules. These molecules were then docked with the SREBP using molecular docking tools, which revealed that diosgenin and smilagenin were the most promising hits compared to the reference inhibitor betulin, with average binding affinities of - 7.42 and - 7.37 kcal/mol and - 6.27 kcal/mol, respectively. To further assess the stability of these complexes along with betulin, we conducted molecular dynamics simulations over a 100 ns simulation period. We employed various parameters, including the root-mean-square deviation, root-mean-square fluctuation, solvent-accessible surface area, free energy of solvation, and radius of gyration, followed by principal component analysis. Furthermore, we evaluated the toxicity of the selected compounds against various anticancer cell lines, as well as their metabolic activity related to CYP450 metabolism and biological activity spectrum. Based on these results, both molecules exhibited promising drug candidate potential and could be utilized for further experimental analysis to elucidate their anticancer potential.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11122-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we conducted an extensive analysis of 252 bioactive compounds derived from native spices and herbs for their potential anti-breast cancer activity against sterol regulatory element-binding protein (SREBP), using in silico techniques. To evaluate the oral bioavailability, overall pharmacokinetics, and safety profiles of these compounds, we employed Lipinski's rule of five and ADME descriptors, which depicted 66 lead molecules. These molecules were then docked with the SREBP using molecular docking tools, which revealed that diosgenin and smilagenin were the most promising hits compared to the reference inhibitor betulin, with average binding affinities of - 7.42 and - 7.37 kcal/mol and - 6.27 kcal/mol, respectively. To further assess the stability of these complexes along with betulin, we conducted molecular dynamics simulations over a 100 ns simulation period. We employed various parameters, including the root-mean-square deviation, root-mean-square fluctuation, solvent-accessible surface area, free energy of solvation, and radius of gyration, followed by principal component analysis. Furthermore, we evaluated the toxicity of the selected compounds against various anticancer cell lines, as well as their metabolic activity related to CYP450 metabolism and biological activity spectrum. Based on these results, both molecules exhibited promising drug candidate potential and could be utilized for further experimental analysis to elucidate their anticancer potential.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
期刊最新文献
Evaluation of selected indigenous spices- and herbs-derived small molecules as potential inhibitors of SREBP and its implications for breast cancer using MD simulations and MMPBSA calculations. Machine learning-based screening and molecular simulations for discovering novel PARP-1 inhibitors targeting DNA repair mechanisms for breast cancer therapy. Thiazolidinedione derivatives: emerging role in cancer therapy. Discovery of novel A2AR antagonist via 3D-QSAR pharmacophore modeling: neuroprotective effects in 6-OHDA-induced SH-SY5Y cells and haloperidol-induced Parkinsonism in C57 bl/6 mice. Structure-based inhibition of acetylcholinesterase and butyrylcholinesterase with 2-Aryl-6-carboxamide benzoxazole derivatives: synthesis, enzymatic assay, and in silico studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1