{"title":"Combined hydrodynamic cavitation and advanced oxidation process for the degradation of hexamethyl pararosaniline chloride.","authors":"P C Anusree, T S Anantha Singh","doi":"10.1080/09593330.2025.2459370","DOIUrl":null,"url":null,"abstract":"<p><p>Wastewater produced by the Textile industry contains dyes, aromatic, phenolic and various complex compounds which seriously harm the environment due to their high toxicity and carcinogenicity. The dyes found in wastewater are the ones frequently used to add colour to various industrial processes. The present study investigates the degradation of hexamethyl pararosaniline chloride (HPC) dye using hydrodynamic cavitation (HC) along with other oxidants. In an HC reactor, the effect of two different cavitating devices venturi and orifice and its combined effect with ZnO, H<sub>2</sub>O<sub>2</sub>, KPS, ZnO + H<sub>2</sub>O<sub>2</sub> for the degradation of HPC have been investigated in detail. The effect of several operating parameters such as inlet pressure (3-7 bar), temperature (25-55 °C), initial concentration (50-300 mg/L) and initial pH (2-7) with respect to cavitation time has been analysed based on the removal of colour, TOC and TN. At the optimum initial dye concentration of 100 ppm, a pH of 5, a temperature of 35 °C and a pressure of 4 bar the maximum removal of TOC was found to be 46.4% and 28.4% for the venturi and orifice plate, respectively, for 120 min of treatment time. The study also focused on the combined oxidation approaches and compared that with the individual process. The extent of HPC mineralization rose from 46.4% for only HC to 67.3% and 43.6% for the combined HC + H<sub>2</sub>O<sub>2</sub>+ ZnO and H<sub>2</sub>O<sub>2</sub> + ZnO, respectively. Overall, it can be concluded that hydrodynamic cavitation-based combined treatment methods are very effective for the degradation of hexamethyl pararosaniline chloride dye.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-14"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2025.2459370","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Wastewater produced by the Textile industry contains dyes, aromatic, phenolic and various complex compounds which seriously harm the environment due to their high toxicity and carcinogenicity. The dyes found in wastewater are the ones frequently used to add colour to various industrial processes. The present study investigates the degradation of hexamethyl pararosaniline chloride (HPC) dye using hydrodynamic cavitation (HC) along with other oxidants. In an HC reactor, the effect of two different cavitating devices venturi and orifice and its combined effect with ZnO, H2O2, KPS, ZnO + H2O2 for the degradation of HPC have been investigated in detail. The effect of several operating parameters such as inlet pressure (3-7 bar), temperature (25-55 °C), initial concentration (50-300 mg/L) and initial pH (2-7) with respect to cavitation time has been analysed based on the removal of colour, TOC and TN. At the optimum initial dye concentration of 100 ppm, a pH of 5, a temperature of 35 °C and a pressure of 4 bar the maximum removal of TOC was found to be 46.4% and 28.4% for the venturi and orifice plate, respectively, for 120 min of treatment time. The study also focused on the combined oxidation approaches and compared that with the individual process. The extent of HPC mineralization rose from 46.4% for only HC to 67.3% and 43.6% for the combined HC + H2O2+ ZnO and H2O2 + ZnO, respectively. Overall, it can be concluded that hydrodynamic cavitation-based combined treatment methods are very effective for the degradation of hexamethyl pararosaniline chloride dye.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current