Efficacy and Ultrastructural Impact of Metarhizium anisopliae and Metarhizium robertsii on Myllocerus subfasciatus.

IF 3.5 4区 生物学 Q2 MICROBIOLOGY Journal of Basic Microbiology Pub Date : 2025-02-02 DOI:10.1002/jobm.70000
Udhayakumar Monisha, Pagalahalli Sankaran Shanmugam, Marimuthu Murugan, Subramanian Jeyarani, Nandagopal Geetha, Thulasy Srinivasan, Angappan Suganthi, Rajasekaran Raghu, Kabirdoss Indhumathi, Rajendran Yamini, Murugesan Naveen, Perumal Vivekanandhan
{"title":"Efficacy and Ultrastructural Impact of Metarhizium anisopliae and Metarhizium robertsii on Myllocerus subfasciatus.","authors":"Udhayakumar Monisha, Pagalahalli Sankaran Shanmugam, Marimuthu Murugan, Subramanian Jeyarani, Nandagopal Geetha, Thulasy Srinivasan, Angappan Suganthi, Rajasekaran Raghu, Kabirdoss Indhumathi, Rajendran Yamini, Murugesan Naveen, Perumal Vivekanandhan","doi":"10.1002/jobm.70000","DOIUrl":null,"url":null,"abstract":"<p><p>The ash weevil, Myllocerus subfasciatus, is a significant insect pest that infests brinjal. Both the adults and grubs feed on the leaves and roots, respectively, leading to considerable yield loss. The subterranean habits of the larvae limit the effectiveness of insecticide applications, necessitating the implementation of integrated pest management programs that utilize entomopathogenic fungi. This investigation aimed to identify potential Metarhizium species against ash weevil larvae through scanning electron microscopy (SEM) and histopathology. The ash weevils were mass-cultured on brinjal plants under insect-proof conditions. Eleven Metarhizium sourced from the departmental repository were subjected to pathogenicity tests on second-instar ash weevil larvae, revealing that a concentration of 1 × 10<sup>6</sup> conidia/mL was optimal for SEM and histological studies. Among the 11 Metarhizium strains examined, the TNAU ENTMA TDM 8 strain produced spores measuring 5.8 µm in length and 2.4 µm in width in both potato dextrose agar (PDA) medium and larvae. SEM analysis indicated that the mycelial adherence and penetration of Metarhizium were most pronounced in the larvae 5 days post inoculation (DPI). Histopathological investigations demonstrated that the TNAU ENTMA TDM 8 strain caused degradation of fat bodies and hemocytes at 3 DPI, and complete body distortion at 7 DPI, while the untreated control exhibited no such effects. The M. robertsii strain TNAU ENTMR GYU 1 displayed slower infectivity compared to the M. anisopliae strains. The TNAU ENTMA TDM 8 strain was determined to be the most effective against M. subfasciatus larvae and can be utilized for managing ash weevil populations.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e70000"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jobm.70000","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The ash weevil, Myllocerus subfasciatus, is a significant insect pest that infests brinjal. Both the adults and grubs feed on the leaves and roots, respectively, leading to considerable yield loss. The subterranean habits of the larvae limit the effectiveness of insecticide applications, necessitating the implementation of integrated pest management programs that utilize entomopathogenic fungi. This investigation aimed to identify potential Metarhizium species against ash weevil larvae through scanning electron microscopy (SEM) and histopathology. The ash weevils were mass-cultured on brinjal plants under insect-proof conditions. Eleven Metarhizium sourced from the departmental repository were subjected to pathogenicity tests on second-instar ash weevil larvae, revealing that a concentration of 1 × 106 conidia/mL was optimal for SEM and histological studies. Among the 11 Metarhizium strains examined, the TNAU ENTMA TDM 8 strain produced spores measuring 5.8 µm in length and 2.4 µm in width in both potato dextrose agar (PDA) medium and larvae. SEM analysis indicated that the mycelial adherence and penetration of Metarhizium were most pronounced in the larvae 5 days post inoculation (DPI). Histopathological investigations demonstrated that the TNAU ENTMA TDM 8 strain caused degradation of fat bodies and hemocytes at 3 DPI, and complete body distortion at 7 DPI, while the untreated control exhibited no such effects. The M. robertsii strain TNAU ENTMR GYU 1 displayed slower infectivity compared to the M. anisopliae strains. The TNAU ENTMA TDM 8 strain was determined to be the most effective against M. subfasciatus larvae and can be utilized for managing ash weevil populations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Basic Microbiology
Journal of Basic Microbiology 生物-微生物学
CiteScore
6.10
自引率
0.00%
发文量
134
审稿时长
1.8 months
期刊介绍: The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions. Papers published deal with: microbial interactions (pathogenic, mutualistic, environmental), ecology, physiology, genetics and cell biology/development, new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications) novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).
期刊最新文献
Carbon-Based Nanomaterials Alter the Behavior and Gene Expression Patterns of Bacteria. Efficacy and Ultrastructural Impact of Metarhizium anisopliae and Metarhizium robertsii on Myllocerus subfasciatus. Stress-Induced Response and Adaptation Mechanisms in Bacillus licheniformis PSKA1 Exposed With Abiotic and Antibiotic Stresses. Adaptive Development of Soil Bacterial Communities to Ecological Processes Caused by Mining Subsidence. Tolerance to NSAIDs in Actinobacteria From a Mexican Volcano Crater: Genomics and Bioremediation Potential.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1