Livia Dominicus, Melissa Zandstra, Josephine Franse, Wim Otte, Arjan Hillebrand, Simone de Graaf, Karen Ambrosen, Birte Yding Glenthøj, Andrew Zalesky, Kirsten Borup Bojesen, Mikkel Sørensen, Floortje Scheepers, Cornelis Stam, Bob Oranje, Bjorn Ebdrup, Edwin van Dellen
{"title":"Advancing treatment response prediction in first-episode psychosis: integrating clinical and electroencephalography features.","authors":"Livia Dominicus, Melissa Zandstra, Josephine Franse, Wim Otte, Arjan Hillebrand, Simone de Graaf, Karen Ambrosen, Birte Yding Glenthøj, Andrew Zalesky, Kirsten Borup Bojesen, Mikkel Sørensen, Floortje Scheepers, Cornelis Stam, Bob Oranje, Bjorn Ebdrup, Edwin van Dellen","doi":"10.1111/pcn.13791","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Prompt diagnosis and intervention are crucial for first-episode psychosis (FEP) outcomes, but predicting the response to antipsychotics remains challenging. We studied whether adding electroencephalography (EEG) characteristics improves clinical prediction models for treatment response and whether EEG-based predictors are influenced by initial treatment.</p><p><strong>Methods: </strong>We included 115 antipsychotic-naïve patients with FEP. Positive and Negative Syndrome Scale (PANSS) and sociodemographic items were included as clinical features. Additionally, we analyzed resting-state EEG data (n = 45) for (relative) power, functional connectivity, and network organization. Treatment response, measured as change in PANSS positive subscale scores (∆PANSS+), was predicted using a random forest regression model. We analyzed whether the most predictive EEG characteristics were influenced after treatment.</p><p><strong>Results: </strong>The clinical model explained 12% variance in symptom reduction in the training set and 32% in the validation set. Including EEG variables in the model led to a nonsignificant increase of 2% (total 34%) explained variance in symptom reduction. High hallucination symptom scores and a more hierarchical organization of alpha band networks (tree hierarchy) were associated with ∆PANSS+ reduction. The tree hierarchy in the alpha band decreased after medication. EEG source analysis revealed that this change was driven by alterations in the degree and centrality of frontal and parietal nodes in the functional brain network.</p><p><strong>Conclusions: </strong>Both clinical and EEG characteristics can inform treatment response prediction in patients with FEP, but the combined model may not be beneficial over a clinical model. Nevertheless, adding a more objective marker such as EEG could be valuable in selected cases.</p>","PeriodicalId":20938,"journal":{"name":"Psychiatry and Clinical Neurosciences","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychiatry and Clinical Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/pcn.13791","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: Prompt diagnosis and intervention are crucial for first-episode psychosis (FEP) outcomes, but predicting the response to antipsychotics remains challenging. We studied whether adding electroencephalography (EEG) characteristics improves clinical prediction models for treatment response and whether EEG-based predictors are influenced by initial treatment.
Methods: We included 115 antipsychotic-naïve patients with FEP. Positive and Negative Syndrome Scale (PANSS) and sociodemographic items were included as clinical features. Additionally, we analyzed resting-state EEG data (n = 45) for (relative) power, functional connectivity, and network organization. Treatment response, measured as change in PANSS positive subscale scores (∆PANSS+), was predicted using a random forest regression model. We analyzed whether the most predictive EEG characteristics were influenced after treatment.
Results: The clinical model explained 12% variance in symptom reduction in the training set and 32% in the validation set. Including EEG variables in the model led to a nonsignificant increase of 2% (total 34%) explained variance in symptom reduction. High hallucination symptom scores and a more hierarchical organization of alpha band networks (tree hierarchy) were associated with ∆PANSS+ reduction. The tree hierarchy in the alpha band decreased after medication. EEG source analysis revealed that this change was driven by alterations in the degree and centrality of frontal and parietal nodes in the functional brain network.
Conclusions: Both clinical and EEG characteristics can inform treatment response prediction in patients with FEP, but the combined model may not be beneficial over a clinical model. Nevertheless, adding a more objective marker such as EEG could be valuable in selected cases.
期刊介绍:
PCN (Psychiatry and Clinical Neurosciences)
Publication Frequency:
Published 12 online issues a year by JSPN
Content Categories:
Review Articles
Regular Articles
Letters to the Editor
Peer Review Process:
All manuscripts undergo peer review by anonymous reviewers, an Editorial Board Member, and the Editor
Publication Criteria:
Manuscripts are accepted based on quality, originality, and significance to the readership
Authors must confirm that the manuscript has not been published or submitted elsewhere and has been approved by each author