{"title":"Development of Genomic Simple Sequence Repeat Markers for Evaluating Resources of <i>Armillaira ostoyae</i> and Their Transferability to <i>Armillaira gallica</i>.","authors":"Sohee Kim, Hwayong Lee","doi":"10.1080/12298093.2024.2444013","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we aimed to develop simple sequence repeat (SSR) markers for evaluating resources in <i>Armillaria ostoyae</i> and examine their transferability to <i>Armillaria gallica,</i> related species. SSR markers were developed using the released <i>A. ostoyae</i> whole-genome sequence (GenBank assembly accession: GCA_900157425.1). The SSR regions were analyzed using the MISA (MIcroSAtellite identification tool) program. A total of 2319 SSR loci consisting of 922 (39.76%) mononucleotide, 763 (32.90%) trinucleotide, and 517 (22.29%) dinucleotide motifs were identified. Marker design involved an arbitrary choice of 150 SSR loci, considering motif abundance. A total of 22 strains of <i>A. ostoyae</i> were analyzed using the developed markers, and 105 markers were successfully amplified. The mean values of major allele frequency, number of alleles, expected heterozygosity, observed heterozygosity, and polymorphism information content (PIC) values were approximately 5.89, 5.4, 0.541, 0.255, and 0.504, respectively. <i>A. gallica</i> was analyzed, and 52 markers (49.5%) were successfully amplified to evaluate the transferability of the developed SSR markers. When these markers were used, the mean values of major allele frequency, number of alleles, expected heterozygosity, observed heterozygosity, and PIC were calculated to be approximately 0.615, 4.3, 0.517, 0.133, and 0.502, respectively. In conclusion, SSR markers were developed using the genome of <i>A. ostoyae</i>, and some of these markers exhibited transferability to <i>A. gallica</i>. These results can be used for resource evaluation of <i>A. ostoyae</i> and <i>A. gallica</i>.</p>","PeriodicalId":18825,"journal":{"name":"Mycobiology","volume":"53 1","pages":"57-71"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780701/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/12298093.2024.2444013","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we aimed to develop simple sequence repeat (SSR) markers for evaluating resources in Armillaria ostoyae and examine their transferability to Armillaria gallica, related species. SSR markers were developed using the released A. ostoyae whole-genome sequence (GenBank assembly accession: GCA_900157425.1). The SSR regions were analyzed using the MISA (MIcroSAtellite identification tool) program. A total of 2319 SSR loci consisting of 922 (39.76%) mononucleotide, 763 (32.90%) trinucleotide, and 517 (22.29%) dinucleotide motifs were identified. Marker design involved an arbitrary choice of 150 SSR loci, considering motif abundance. A total of 22 strains of A. ostoyae were analyzed using the developed markers, and 105 markers were successfully amplified. The mean values of major allele frequency, number of alleles, expected heterozygosity, observed heterozygosity, and polymorphism information content (PIC) values were approximately 5.89, 5.4, 0.541, 0.255, and 0.504, respectively. A. gallica was analyzed, and 52 markers (49.5%) were successfully amplified to evaluate the transferability of the developed SSR markers. When these markers were used, the mean values of major allele frequency, number of alleles, expected heterozygosity, observed heterozygosity, and PIC were calculated to be approximately 0.615, 4.3, 0.517, 0.133, and 0.502, respectively. In conclusion, SSR markers were developed using the genome of A. ostoyae, and some of these markers exhibited transferability to A. gallica. These results can be used for resource evaluation of A. ostoyae and A. gallica.
期刊介绍:
Mycobiology is an international journal devoted to the publication of fundamental and applied investigations on all aspects of mycology and their traditional allies. It is published quarterly and is the official publication of the Korean Society of Mycology. Mycobiology publishes reports of basic research on fungi and fungus-like organisms, including yeasts, filamentous fungi, lichen fungi, oomycetes, moulds, and mushroom. Topics also include molecular and cellular biology, biochemistry, metabolism, developmental biology, environmental mycology, evolution, ecology, taxonomy and systematics, genetics/genomics, fungal pathogen and disease control, physiology, and industrial biotechnology using fungi.