Novel intronic variant in NDUFS7 gene results in mitochondrial complex I assembly defect with early basal ganglia and midbrain involvement with progressive neuroimaging findings
Jaakko Oikarainen , Reetta Hinttala , Naemeh Nayebzadeh , Salla M. Kangas , Katariina Mankinen , Elisa Rahikkala , Hannaleena Kokkonen , Päivi Vieira , Maria Suo-Palosaari , Johanna Uusimaa
{"title":"Novel intronic variant in NDUFS7 gene results in mitochondrial complex I assembly defect with early basal ganglia and midbrain involvement with progressive neuroimaging findings","authors":"Jaakko Oikarainen , Reetta Hinttala , Naemeh Nayebzadeh , Salla M. Kangas , Katariina Mankinen , Elisa Rahikkala , Hannaleena Kokkonen , Päivi Vieira , Maria Suo-Palosaari , Johanna Uusimaa","doi":"10.1016/j.mito.2025.102007","DOIUrl":null,"url":null,"abstract":"<div><div>Leigh syndrome is the most common phenotype of mitochondrial disorders in children. This study demonstrates clinical, neuroradiological, and molecular genetic findings in siblings with Leigh syndrome and isolated complex I assembly defect associated with intronic c.16 + 5G > A variant in the <em>NDUFS7</em> gene. Whole exome sequencing was carried out to identify the causative variant. The gene and protein expression of <em>NDUFS7</em> were studied using patient-derived fibroblasts. Assembly of mitochondrial respiratory chain enzymes was analyzed using Blue Native PAGE. This study shows that the <em>NDUFS7</em> c.16 + 5G > A variant (rs375282422) has a causative role in Leigh syndrome. Evolution of neuroimaging findings related to this gene variant are demonstrated.</div></div>","PeriodicalId":18606,"journal":{"name":"Mitochondrion","volume":"81 ","pages":"Article 102007"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrion","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567724925000042","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Leigh syndrome is the most common phenotype of mitochondrial disorders in children. This study demonstrates clinical, neuroradiological, and molecular genetic findings in siblings with Leigh syndrome and isolated complex I assembly defect associated with intronic c.16 + 5G > A variant in the NDUFS7 gene. Whole exome sequencing was carried out to identify the causative variant. The gene and protein expression of NDUFS7 were studied using patient-derived fibroblasts. Assembly of mitochondrial respiratory chain enzymes was analyzed using Blue Native PAGE. This study shows that the NDUFS7 c.16 + 5G > A variant (rs375282422) has a causative role in Leigh syndrome. Evolution of neuroimaging findings related to this gene variant are demonstrated.
期刊介绍:
Mitochondrion is a definitive, high profile, peer-reviewed international research journal. The scope of Mitochondrion is broad, reporting on basic science of mitochondria from all organisms and from basic research to pathology and clinical aspects of mitochondrial diseases. The journal welcomes original contributions from investigators working in diverse sub-disciplines such as evolution, biophysics, biochemistry, molecular and cell biology, genetics, pharmacology, toxicology, forensic science, programmed cell death, aging, cancer and clinical features of mitochondrial diseases.