{"title":"Inhibition of the expression of TRIM63 alleviates ventilator-induced diaphragmatic dysfunction by modulating the PPARα/PGC-1α pathway","authors":"Jun Liu , Yuhan Chen , Dong Han , Ming Huang","doi":"10.1016/j.mito.2025.102025","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Ventilator-induced diaphragmatic dysfunction (VIDD) significantly affects the prognosis of critically ill patients and has attracted considerable attention. Tripartite motif-containing protein 63 (TRIM63) plays a pivotal role in muscle protein degradation and muscle mass regulation. Its overexpression is closely associated with VIDD; however, data on the specific effects of TRIM63 on this pathological process remain insufficient.</div></div><div><h3>Objectives</h3><div>The aim of this study is to elucidate the role of TRIM63 in VIDD and to assess the correlation between the TRIM63-peroxisome proliferator activated receptor α (PPARα)/PPAR gamma coactivator (PGC-1α) pathway and mitochondrial function.</div></div><div><h3>Methods</h3><div>Specific pathogen-free grade female Wistar rats were divided into four groups: Sham + NS, Sham + MyoMed-205, MV + NS, and MV + MyoMed-205. The inhibitor group received MyoMed-205 to suppress the expression of TRIM63. After the experiment, diaphragmatic contractility, mitochondrial structure and function, oxidative stress levels, autophagy, apoptosis, and the involvement of the PPARα/PGC-1α pathway were evaluated.</div></div><div><h3>Results</h3><div>Our findings indicated that inhibiting TRIM63 prevented mechanical ventilation (MV)-induced diaphragmatic contractile dysfunction and atrophy. Mechanistically, inhibition of the expression of TRIM63 resulted in significant upregulation of the PPARα and PGC-1α expression levels, improved mitochondrial dynamics, enhanced the mitochondrial membrane potential, and reduced mitophagy and apoptosis. Structurally, inhibition of the expression of TRIM63 ameliorated MV-induced mitochondrial fragmentation, fusion, and fission.</div></div><div><h3>Conclusions</h3><div>The upregulated expression of TRIM63 in VIDD exacerbated mitochondrial damage by inhibiting the PPARα/PGC-1α signaling pathway, leading to increased reactive oxygen species, mitophagy, and apoptosis. Inhibition of the expression of TRIM63 enhanced mitochondrial function, decreased mitophagy and apoptosis, and mitigated VIDD. Thus, TRIM63 may serve as a potential target for the prevention and treatment of VIDD.</div></div>","PeriodicalId":18606,"journal":{"name":"Mitochondrion","volume":"83 ","pages":"Article 102025"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrion","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567724925000224","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Ventilator-induced diaphragmatic dysfunction (VIDD) significantly affects the prognosis of critically ill patients and has attracted considerable attention. Tripartite motif-containing protein 63 (TRIM63) plays a pivotal role in muscle protein degradation and muscle mass regulation. Its overexpression is closely associated with VIDD; however, data on the specific effects of TRIM63 on this pathological process remain insufficient.
Objectives
The aim of this study is to elucidate the role of TRIM63 in VIDD and to assess the correlation between the TRIM63-peroxisome proliferator activated receptor α (PPARα)/PPAR gamma coactivator (PGC-1α) pathway and mitochondrial function.
Methods
Specific pathogen-free grade female Wistar rats were divided into four groups: Sham + NS, Sham + MyoMed-205, MV + NS, and MV + MyoMed-205. The inhibitor group received MyoMed-205 to suppress the expression of TRIM63. After the experiment, diaphragmatic contractility, mitochondrial structure and function, oxidative stress levels, autophagy, apoptosis, and the involvement of the PPARα/PGC-1α pathway were evaluated.
Results
Our findings indicated that inhibiting TRIM63 prevented mechanical ventilation (MV)-induced diaphragmatic contractile dysfunction and atrophy. Mechanistically, inhibition of the expression of TRIM63 resulted in significant upregulation of the PPARα and PGC-1α expression levels, improved mitochondrial dynamics, enhanced the mitochondrial membrane potential, and reduced mitophagy and apoptosis. Structurally, inhibition of the expression of TRIM63 ameliorated MV-induced mitochondrial fragmentation, fusion, and fission.
Conclusions
The upregulated expression of TRIM63 in VIDD exacerbated mitochondrial damage by inhibiting the PPARα/PGC-1α signaling pathway, leading to increased reactive oxygen species, mitophagy, and apoptosis. Inhibition of the expression of TRIM63 enhanced mitochondrial function, decreased mitophagy and apoptosis, and mitigated VIDD. Thus, TRIM63 may serve as a potential target for the prevention and treatment of VIDD.
期刊介绍:
Mitochondrion is a definitive, high profile, peer-reviewed international research journal. The scope of Mitochondrion is broad, reporting on basic science of mitochondria from all organisms and from basic research to pathology and clinical aspects of mitochondrial diseases. The journal welcomes original contributions from investigators working in diverse sub-disciplines such as evolution, biophysics, biochemistry, molecular and cell biology, genetics, pharmacology, toxicology, forensic science, programmed cell death, aging, cancer and clinical features of mitochondrial diseases.