Morgan Carlton, Tuo Zang, Tony J Parker, Chamindie Punyadeera, Joanne Voisey, Leila Cuttle
{"title":"Salivary Proteome Is Altered in Children With Small Area Thermal Burns.","authors":"Morgan Carlton, Tuo Zang, Tony J Parker, Chamindie Punyadeera, Joanne Voisey, Leila Cuttle","doi":"10.1002/prca.202300107","DOIUrl":null,"url":null,"abstract":"<p><p>Saliva is a child appropriate biofluid, but it has not previously been used to evaluate the systemic response to burn injury in children. The aim of this study was to investigate the salivary proteome of children with small area thermal skin burns relative to different burn characteristics (mechanism, time to re-epithelialization and risk of emotional distress). SWATH Mass Spectrometry was used to quantify the abundance of 742 proteins in the saliva of children with burns (n = 22) and healthy controls (n = 37). Eight proteins were differentially abundant in the saliva of children with burns compared to healthy children, and these were associated with immune processes, epidermal cell differentiation and transferrin receptor binding. Eleven proteins were differentially abundant in patients with burns of different mechanisms. Scald burns had an over-representation of immune/inflammatory response processes, and contact burns had an over-representation of cornification, intermediate filament assembly and cell death cellular processes. Four proteins were elevated in patients who were at high risk for emotional distress and 15 proteins were correlated with time to wound re-epithelialization. This pilot study proves that saliva can be used for paediatric biomarker discovery and can be used as a diagnostic and prognostic sample to investigate systemic changes in a paediatric burn cohort.</p>","PeriodicalId":20571,"journal":{"name":"PROTEOMICS – Clinical Applications","volume":" ","pages":"e202300107"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROTEOMICS – Clinical Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prca.202300107","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Saliva is a child appropriate biofluid, but it has not previously been used to evaluate the systemic response to burn injury in children. The aim of this study was to investigate the salivary proteome of children with small area thermal skin burns relative to different burn characteristics (mechanism, time to re-epithelialization and risk of emotional distress). SWATH Mass Spectrometry was used to quantify the abundance of 742 proteins in the saliva of children with burns (n = 22) and healthy controls (n = 37). Eight proteins were differentially abundant in the saliva of children with burns compared to healthy children, and these were associated with immune processes, epidermal cell differentiation and transferrin receptor binding. Eleven proteins were differentially abundant in patients with burns of different mechanisms. Scald burns had an over-representation of immune/inflammatory response processes, and contact burns had an over-representation of cornification, intermediate filament assembly and cell death cellular processes. Four proteins were elevated in patients who were at high risk for emotional distress and 15 proteins were correlated with time to wound re-epithelialization. This pilot study proves that saliva can be used for paediatric biomarker discovery and can be used as a diagnostic and prognostic sample to investigate systemic changes in a paediatric burn cohort.
期刊介绍:
PROTEOMICS - Clinical Applications has developed into a key source of information in the field of applying proteomics to the study of human disease and translation to the clinic. With 12 issues per year, the journal will publish papers in all relevant areas including:
-basic proteomic research designed to further understand the molecular mechanisms underlying dysfunction in human disease
-the results of proteomic studies dedicated to the discovery and validation of diagnostic and prognostic disease biomarkers
-the use of proteomics for the discovery of novel drug targets
-the application of proteomics in the drug development pipeline
-the use of proteomics as a component of clinical trials.