Age-related effects on dynamic postural stability and prefrontal cortex activation during precision fitting tasks.
IF 2.3 3区 生物学Q2 MULTIDISCIPLINARY SCIENCESPeerJPub Date : 2025-01-29eCollection Date: 2025-01-01DOI:10.7717/peerj.18548
Jiahao Pan, Hui Tang
{"title":"Age-related effects on dynamic postural stability and prefrontal cortex activation during precision fitting tasks.","authors":"Jiahao Pan, Hui Tang","doi":"10.7717/peerj.18548","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dynamic postural control is impaired in older adults, as evidenced from worse dynamic postural stability compared to young adults during upright stance while concurrent goal-directed tasks. Prefrontal cortex (PFC) is considered to play an important role in goal-directed tasks. This study aimed to investigate the age effects on dynamic postural stability and PFC activation during precision fitting tasks.</p><p><strong>Methods: </strong>Participant performed precision fitting tasks under four different conditions: large opening size with their arm's length (close-large), small opening size with their arm's length (close-small), large opening size with 1.3 times arm's length (far-large), and small opening size with 1.3 times arm's length (far-small). We analyzed the center of pressure-related outcomes representing dynamic postural stability and PFC activation at the six different subregions from healthy older adults (<i>n</i> = 15, 68.0 ± 3.5 years), and gender-matched middle-aged (<i>n</i> = 15, 48.73 ± 3.06 years) and young (<i>n</i> = 15, 19.47 ± 0.64 years) adults.</p><p><strong>Results: </strong>The dynamic postural stability presented the young > middle-aged > older groups across the conditions. Specifically, the young group presented better dynamic postural stability than the older group in the close-large, far-large, and far-small conditions (<i>p</i> < .05), while showed better dynamic postural stability than the middle-aged group in the close-large condition (<i>p</i> < .05). Additionally, the older group had greater PFC activation at all PFC subregions than the young group (<i>p</i> < .05), while had greater activation at left dorsolateral and ventrolateral PFC than the middle-aged group (<i>p</i> < .05). The middle-aged group presented greater activation at left dorsomedial PFC than the young group (<i>p</i> < .05).</p><p><strong>Conclusion: </strong>Heightened dorsomedial PFC activation in middle-aged adults compared to young adults may reflect a deficit in processing the visuomotor information during the precision fitting tasks. Degeneration of the ability in automatic coordination of dynamic postural control may begin to occur at midlife.</p>","PeriodicalId":19799,"journal":{"name":"PeerJ","volume":"13 ","pages":"e18548"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786713/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7717/peerj.18548","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Dynamic postural control is impaired in older adults, as evidenced from worse dynamic postural stability compared to young adults during upright stance while concurrent goal-directed tasks. Prefrontal cortex (PFC) is considered to play an important role in goal-directed tasks. This study aimed to investigate the age effects on dynamic postural stability and PFC activation during precision fitting tasks.
Methods: Participant performed precision fitting tasks under four different conditions: large opening size with their arm's length (close-large), small opening size with their arm's length (close-small), large opening size with 1.3 times arm's length (far-large), and small opening size with 1.3 times arm's length (far-small). We analyzed the center of pressure-related outcomes representing dynamic postural stability and PFC activation at the six different subregions from healthy older adults (n = 15, 68.0 ± 3.5 years), and gender-matched middle-aged (n = 15, 48.73 ± 3.06 years) and young (n = 15, 19.47 ± 0.64 years) adults.
Results: The dynamic postural stability presented the young > middle-aged > older groups across the conditions. Specifically, the young group presented better dynamic postural stability than the older group in the close-large, far-large, and far-small conditions (p < .05), while showed better dynamic postural stability than the middle-aged group in the close-large condition (p < .05). Additionally, the older group had greater PFC activation at all PFC subregions than the young group (p < .05), while had greater activation at left dorsolateral and ventrolateral PFC than the middle-aged group (p < .05). The middle-aged group presented greater activation at left dorsomedial PFC than the young group (p < .05).
Conclusion: Heightened dorsomedial PFC activation in middle-aged adults compared to young adults may reflect a deficit in processing the visuomotor information during the precision fitting tasks. Degeneration of the ability in automatic coordination of dynamic postural control may begin to occur at midlife.
期刊介绍:
PeerJ is an open access peer-reviewed scientific journal covering research in the biological and medical sciences. At PeerJ, authors take out a lifetime publication plan (for as little as $99) which allows them to publish articles in the journal for free, forever. PeerJ has 5 Nobel Prize Winners on the Board; they have won several industry and media awards; and they are widely recognized as being one of the most interesting recent developments in academic publishing.