Ciani C. Bradley , Imari Walker-Franklin , Alex Kovach , Vijay Sivaraman , Rob U. Onyenwoke
{"title":"The effects of flavored vaped e-liquids on cultured human macrophages derived from the central and peripheral nervous systems","authors":"Ciani C. Bradley , Imari Walker-Franklin , Alex Kovach , Vijay Sivaraman , Rob U. Onyenwoke","doi":"10.1016/j.tiv.2025.106013","DOIUrl":null,"url":null,"abstract":"<div><div>The use of the electronic cigarette (e-cig) to consume an aerosol is referred to as “vaping” and has become the most popular method for nicotine consumption amongst youth and many adults worldwide. This popularity is at least partially attributable to the availability of 1000s of distinctly flavored e-liquids. At present, a large number of studies have evaluated the potential negative effects of e-cig use in relation to pulmonary disease. These studies have demonstrated that vaping can lead to immune activation and cell death but typically include only epithelial cell line studies. At present, significantly less is known about the effects of vaped e-liquids on the central nervous system (CNS) and peripheral nervous system (PNS). To investigate this gap, we utilized the human macrophage cell lines KG-1 (PNS-resident macrophages) and DBTRG-05MG (CNS-resident macrophages) and examined their exposure to vaped e-liquids. To carry out these investigations, measurements of: cell viability, expression of inflammatory cytokines, phagocytosis and reactive oxygen species (ROS) were employed. Our findings illustrate that when exposed to e-liquid, and especially flavored e-liquids, both peripheral and central macrophage cell lines decrease in cell viability, showcase an upregulated level of expression of pro-inflammatory cytokines, a diminished level of phagocytic activity and an overall increased level of reactive oxidative species. Thus, our study further indicates that the use of the e-cig can cause phenotype and immune disruptions within both the CNS and PNS.</div></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"104 ","pages":"Article 106013"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology in Vitro","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0887233325000074","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The use of the electronic cigarette (e-cig) to consume an aerosol is referred to as “vaping” and has become the most popular method for nicotine consumption amongst youth and many adults worldwide. This popularity is at least partially attributable to the availability of 1000s of distinctly flavored e-liquids. At present, a large number of studies have evaluated the potential negative effects of e-cig use in relation to pulmonary disease. These studies have demonstrated that vaping can lead to immune activation and cell death but typically include only epithelial cell line studies. At present, significantly less is known about the effects of vaped e-liquids on the central nervous system (CNS) and peripheral nervous system (PNS). To investigate this gap, we utilized the human macrophage cell lines KG-1 (PNS-resident macrophages) and DBTRG-05MG (CNS-resident macrophages) and examined their exposure to vaped e-liquids. To carry out these investigations, measurements of: cell viability, expression of inflammatory cytokines, phagocytosis and reactive oxygen species (ROS) were employed. Our findings illustrate that when exposed to e-liquid, and especially flavored e-liquids, both peripheral and central macrophage cell lines decrease in cell viability, showcase an upregulated level of expression of pro-inflammatory cytokines, a diminished level of phagocytic activity and an overall increased level of reactive oxidative species. Thus, our study further indicates that the use of the e-cig can cause phenotype and immune disruptions within both the CNS and PNS.
期刊介绍:
Toxicology in Vitro publishes original research papers and reviews on the application and use of in vitro systems for assessing or predicting the toxic effects of chemicals and elucidating their mechanisms of action. These in vitro techniques include utilizing cell or tissue cultures, isolated cells, tissue slices, subcellular fractions, transgenic cell cultures, and cells from transgenic organisms, as well as in silico modelling. The Journal will focus on investigations that involve the development and validation of new in vitro methods, e.g. for prediction of toxic effects based on traditional and in silico modelling; on the use of methods in high-throughput toxicology and pharmacology; elucidation of mechanisms of toxic action; the application of genomics, transcriptomics and proteomics in toxicology, as well as on comparative studies that characterise the relationship between in vitro and in vivo findings. The Journal strongly encourages the submission of manuscripts that focus on the development of in vitro methods, their practical applications and regulatory use (e.g. in the areas of food components cosmetics, pharmaceuticals, pesticides, and industrial chemicals). Toxicology in Vitro discourages papers that record reporting on toxicological effects from materials, such as plant extracts or herbal medicines, that have not been chemically characterized.