Ester Murillo, Federico Martínez-Seidel, Kostadin E Atanasov, Dione Gentry-Torfer, Alexandre Augusto Pereira Firmino, Alexander Erban, Shuai Nie, Michael G Leeming, Pipob Suwanchaikasem, Berin A Boughton, Nicholas A Williamson, Ute Roessner, Joachim Kopka, Rubén Alcázar
{"title":"Polyamines and flg22 reshape the ribosomal protein composition of actively translating ribosomes in plants.","authors":"Ester Murillo, Federico Martínez-Seidel, Kostadin E Atanasov, Dione Gentry-Torfer, Alexandre Augusto Pereira Firmino, Alexander Erban, Shuai Nie, Michael G Leeming, Pipob Suwanchaikasem, Berin A Boughton, Nicholas A Williamson, Ute Roessner, Joachim Kopka, Rubén Alcázar","doi":"10.1016/j.plaphy.2025.109585","DOIUrl":null,"url":null,"abstract":"<p><p>Polyamines are small, polycationic molecules with amino groups that are present in most living organisms. Studies indicate that polyamines increase general protein synthesis and are essential for efficient translation. While progress has been made in understanding the role of polyamines in translation in bacteria and mammals, their contribution and mode of action in plants remain largely unexplored. In a previous study, we found that putrescine (Put) and the pathogen-associated molecular pattern (PAMP) from bacterial flagellin (flg22) transcriptionally induced ribosome biogenesis in plants. Here we examined the impact of polyamines (Put and spermine, Spm) and flg22 on ribosome complex formation in Arabidopsis. Our results indicate that polyamines, flg22 and their combinations increase the abundance of actively translating polysomes. Riboproteomic analyses revealed that polyamines and flg22 trigger differential changes in the accumulation of ribosomal proteins, which are structurally confined in response to Put. Importantly, Put was found binding to non-translating and actively translating ribosomes, suggesting that this polyamine has a role in functional aspects of translation, such as stabilization and/or remodeling of polysomal complexes. Additional global proteomics analyses in polyamine biosynthesis mutants revealed that lower Put availability triggers changes in proteins associated with ribonucleoprotein complex binding and biogenesis. Overall, our findings highlight the effect of polyamines and flg22 on shaping the ribosomal protein composition of actively translating ribosomes in plants.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109585"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2025.109585","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Polyamines are small, polycationic molecules with amino groups that are present in most living organisms. Studies indicate that polyamines increase general protein synthesis and are essential for efficient translation. While progress has been made in understanding the role of polyamines in translation in bacteria and mammals, their contribution and mode of action in plants remain largely unexplored. In a previous study, we found that putrescine (Put) and the pathogen-associated molecular pattern (PAMP) from bacterial flagellin (flg22) transcriptionally induced ribosome biogenesis in plants. Here we examined the impact of polyamines (Put and spermine, Spm) and flg22 on ribosome complex formation in Arabidopsis. Our results indicate that polyamines, flg22 and their combinations increase the abundance of actively translating polysomes. Riboproteomic analyses revealed that polyamines and flg22 trigger differential changes in the accumulation of ribosomal proteins, which are structurally confined in response to Put. Importantly, Put was found binding to non-translating and actively translating ribosomes, suggesting that this polyamine has a role in functional aspects of translation, such as stabilization and/or remodeling of polysomal complexes. Additional global proteomics analyses in polyamine biosynthesis mutants revealed that lower Put availability triggers changes in proteins associated with ribonucleoprotein complex binding and biogenesis. Overall, our findings highlight the effect of polyamines and flg22 on shaping the ribosomal protein composition of actively translating ribosomes in plants.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.