Germ granule-mediated mRNA storage and translational control.

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY RNA Biology Pub Date : 2025-12-01 Epub Date: 2025-02-06 DOI:10.1080/15476286.2025.2462276
Hoang-Anh Pham-Bui, Mihye Lee
{"title":"Germ granule-mediated mRNA storage and translational control.","authors":"Hoang-Anh Pham-Bui, Mihye Lee","doi":"10.1080/15476286.2025.2462276","DOIUrl":null,"url":null,"abstract":"<p><p>Germ cells depend on specialized post-transcriptional regulation for proper development and function, much of which is mediated by dynamic RNA granules. These membrane-less organelles form through the condensation of RNA and proteins, governed by multivalent biomolecular interactions. RNA granules compartmentalize cellular components, selectively enriching specific factors and modulating biochemical reactions. Over recent decades, various types of RNA granules have been identified in germ cells across species, with extensive studies uncovering their molecular roles and developmental significance. This review explores the mRNA regulatory mechanisms mediated by RNA granules in germ cells. We discuss the distinct spatial organization of specific granule components and the variations in material states of germ granules, which contribute to the regulation of mRNA storage and translation. Additionally, we highlight emerging research on how changes in these material states, during developmental stages, reflect the dynamic nature of germ granules and their critical role in development.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":" ","pages":"1-11"},"PeriodicalIF":3.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810088/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2025.2462276","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Germ cells depend on specialized post-transcriptional regulation for proper development and function, much of which is mediated by dynamic RNA granules. These membrane-less organelles form through the condensation of RNA and proteins, governed by multivalent biomolecular interactions. RNA granules compartmentalize cellular components, selectively enriching specific factors and modulating biochemical reactions. Over recent decades, various types of RNA granules have been identified in germ cells across species, with extensive studies uncovering their molecular roles and developmental significance. This review explores the mRNA regulatory mechanisms mediated by RNA granules in germ cells. We discuss the distinct spatial organization of specific granule components and the variations in material states of germ granules, which contribute to the regulation of mRNA storage and translation. Additionally, we highlight emerging research on how changes in these material states, during developmental stages, reflect the dynamic nature of germ granules and their critical role in development.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胚芽颗粒介导的mRNA储存和翻译控制。
生殖细胞的正常发育和功能依赖于特殊的转录后调控,其中大部分是由动态RNA颗粒介导的。这些无膜细胞器通过RNA和蛋白质的缩合形成,由多价生物分子相互作用控制。RNA颗粒划分细胞成分,选择性地富集特定因子并调节生化反应。近几十年来,各种类型的RNA颗粒在不同物种的生殖细胞中被发现,大量的研究揭示了它们的分子作用和发育意义。本文综述了RNA颗粒在生殖细胞中介导的mRNA调控机制。我们讨论了特定颗粒组分的独特空间组织和胚芽颗粒物质状态的变化,这些变化有助于调控mRNA的储存和翻译。此外,我们还重点介绍了在发育阶段这些物质状态的变化如何反映胚芽颗粒的动态性质及其在发育中的关键作用的新兴研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
RNA Biology
RNA Biology 生物-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
82
审稿时长
1 months
期刊介绍: RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research. RNA Biology brings together a multidisciplinary community of scientists working in the areas of: Transcription and splicing Post-transcriptional regulation of gene expression Non-coding RNAs RNA localization Translation and catalysis by RNA Structural biology Bioinformatics RNA in disease and therapy
期刊最新文献
Different MicroRNAs expression in Mycobacterium tuberculosis and correlation with prognosis of the disease. RGG-motif protein Scd6 affects oxidative stress response by regulating cytosolic caTalase T1 (Ctt1). Conversations at the crossroads of the Human RNome project: a collaborative reflection by the RNome early career Researcher (ECR). Rna analysis of the regulation of expression and alternative splicing in polycystic ovarian syndrome. Identification of deleterious non-synonymous single nucleotide polymorphisms in the mRNA decay activator ZFP36L2.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1