Wenqi Ding , Tong Lin , Yun Yang , Wen-Wei Li , Shaoan Cheng , Hao Song
{"title":"Proton motive force generated by microbial rhodopsin promotes extracellular electron transfer","authors":"Wenqi Ding , Tong Lin , Yun Yang , Wen-Wei Li , Shaoan Cheng , Hao Song","doi":"10.1016/j.synbio.2025.01.001","DOIUrl":null,"url":null,"abstract":"<div><div>The primary limitation to the practicability of electroactive microorganisms in bioelectrochemical systems lies in their low extracellular electron transfer (EET) efficiency. The proton motive force (PMF) represents the electrochemical gradient of protons generated by electron transport and proton pumping across the cytoplasmic membrane, serving as a crucial energy transfer pathway in bacterial membranes. Nevertheless, the impact of PMF on the EET efficiency remains ambiguous, while the microbial rhodopsin offers a simple and efficient avenue for non-photosynthetic cells to harness PMF. Here, we studied the function of three microbial rhodopsins (Arch, Mac, and cR-1) in facilitating EET via their heterologous expression in <em>S. oneidensis</em>, a model electroactive microorganism. Among these, the recombinant strain expressing rhodopsin cR-1 exhibited the highest output power density of 0.87 W/m<sup>2</sup>, 3.49-fold increase over the wild-type <em>S. oneidensis</em> MR-1. Our further transcriptomics analyses of the energy and materials metabolism of strain cR-1 showed that the underlying mechanism of enhanced EET efficiency was resulted from heterologous expression of the light-driven proton pump. The results suggested that strain cR-1 effectively expels protons to generate additional PMF and provide extra ATP supply to the cells, which facilitated lactate uptake and utilization, thus enhancing electrons generation in cells. This augmented intracellular electron pool capacity ultimately resulted in enhancement of EET rate and power generation efficiency of the recombinant <em>S. oneidensis</em>.</div></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"10 2","pages":"Pages 410-420"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786069/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X25000018","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The primary limitation to the practicability of electroactive microorganisms in bioelectrochemical systems lies in their low extracellular electron transfer (EET) efficiency. The proton motive force (PMF) represents the electrochemical gradient of protons generated by electron transport and proton pumping across the cytoplasmic membrane, serving as a crucial energy transfer pathway in bacterial membranes. Nevertheless, the impact of PMF on the EET efficiency remains ambiguous, while the microbial rhodopsin offers a simple and efficient avenue for non-photosynthetic cells to harness PMF. Here, we studied the function of three microbial rhodopsins (Arch, Mac, and cR-1) in facilitating EET via their heterologous expression in S. oneidensis, a model electroactive microorganism. Among these, the recombinant strain expressing rhodopsin cR-1 exhibited the highest output power density of 0.87 W/m2, 3.49-fold increase over the wild-type S. oneidensis MR-1. Our further transcriptomics analyses of the energy and materials metabolism of strain cR-1 showed that the underlying mechanism of enhanced EET efficiency was resulted from heterologous expression of the light-driven proton pump. The results suggested that strain cR-1 effectively expels protons to generate additional PMF and provide extra ATP supply to the cells, which facilitated lactate uptake and utilization, thus enhancing electrons generation in cells. This augmented intracellular electron pool capacity ultimately resulted in enhancement of EET rate and power generation efficiency of the recombinant S. oneidensis.
期刊介绍:
Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.