Development of a machine learning model and a web application for predicting neurological outcome at hospital discharge in spinal cord injury patients.

IF 4.9 1区 医学 Q1 CLINICAL NEUROLOGY Spine Journal Pub Date : 2025-01-31 DOI:10.1016/j.spinee.2025.01.005
Kyota Kitagawa, Satoshi Maki, Takeo Furuya, Yuki Shiratani, Yuki Nagashima, Juntaro Maruyama, Yasunori Toki, Shuhei Iwata, Masahiro Inoue, Yasuhiro Shiga, Kazuhide Inage, Sumihisa Orita, Seiji Ohtori
{"title":"Development of a machine learning model and a web application for predicting neurological outcome at hospital discharge in spinal cord injury patients.","authors":"Kyota Kitagawa, Satoshi Maki, Takeo Furuya, Yuki Shiratani, Yuki Nagashima, Juntaro Maruyama, Yasunori Toki, Shuhei Iwata, Masahiro Inoue, Yasuhiro Shiga, Kazuhide Inage, Sumihisa Orita, Seiji Ohtori","doi":"10.1016/j.spinee.2025.01.005","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Spinal cord injury (SCI) is a devastating condition with profound physical, psychological, and socioeconomic consequences. Despite advances in SCI treatment, accurately predicting functional recovery remains a significant challenge. Conventional prognostic methods often fall short in capturing the complex interplay of factors influencing SCI outcomes. There is an urgent demand for more precise and comprehensive prognostic tools that can guide clinical decision-making and improve patient care in SCI.</p><p><strong>Purpose: </strong>This study aims to develop and validate a machine learning (ML) model for predicting American Spinal Injury Association (ASIA) Impairment Scale (AIS) at discharge in SCI patients. We also aim to convert this model into an open-access web application.</p><p><strong>Study design/setting: </strong>This was a retrospective cohort study enrolling traumatic SCI patients from 1991 to 2015, analyzed in 2023. Data were obtained from the Japan Rehabilitation Database (JARD), a comprehensive nationwide database that includes SCI patients from specialized SCI centers and rehabilitation hospitals across Japan.</p><p><strong>Patients sample: </strong>4,108 SCI cases from JARD were reviewed, excluding 405 cases, patients caused by nontraumatic injuries, patients who were graded as AIS E at admission, and patients without data of AIS at discharge, resulting in 3,703 cases being included in the study. Patient demographics and specific SCI injury characteristics at admission were utilized for model training and prediction.</p><p><strong>Outcome measures: </strong>Model performance was evaluated based on R<sup>2</sup>, accuracy, and the weighted Kappa coefficient. Shapley additive explanations (SHAP) values highlighted significant features influencing the model's output.</p><p><strong>Methods: </strong>The primary outcome was AIS at discharge, treated as a continuous variable (0-4) to capture the ordinal nature and clinical significance of potential misclassifications. Data preprocessing included multicollinearity removal, feature selection using the Boruta algorithm, and iterative imputation for missing data. The dataset was split using the hold-out method with a 7:3 ratio resulting in 2,592 cases for training and 1,111 cases for testing the regression model. A best performing model was defined as the highest R<sup>2</sup> using PyCaret's automated model comparison. Final predictions of regression model were discretized to the original AIS categories for clinical interpretation.</p><p><strong>Results: </strong>The Gradient Boosting Regressor (GBR) was identified as the optimal model. The GBR model showed an R² of 0.869, accuracy of 0.814, and weighted Kappa of 0.940. Eleven key variables, including AIS at admission, the day from injury to admission, and the motor score of L3, were identified as significant based on SHAP values. This model was then adapted into a web application via Streamlit.</p><p><strong>Conclusions: </strong>We developed a high-accuracy ML model for predicting the AIS at discharge, which effectively captures the ordinal nature of the AIS scale, using 11 key variables. This model demonstrated its performance to provide reliable prognostic information. The model has been integrated into a user-friendly, open-access web application (http://3.138.174.54:8502/). This tool has the potential to aid in resource allocation and enhance treatment for each patient.</p>","PeriodicalId":49484,"journal":{"name":"Spine Journal","volume":" ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spine Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.spinee.2025.01.005","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Spinal cord injury (SCI) is a devastating condition with profound physical, psychological, and socioeconomic consequences. Despite advances in SCI treatment, accurately predicting functional recovery remains a significant challenge. Conventional prognostic methods often fall short in capturing the complex interplay of factors influencing SCI outcomes. There is an urgent demand for more precise and comprehensive prognostic tools that can guide clinical decision-making and improve patient care in SCI.

Purpose: This study aims to develop and validate a machine learning (ML) model for predicting American Spinal Injury Association (ASIA) Impairment Scale (AIS) at discharge in SCI patients. We also aim to convert this model into an open-access web application.

Study design/setting: This was a retrospective cohort study enrolling traumatic SCI patients from 1991 to 2015, analyzed in 2023. Data were obtained from the Japan Rehabilitation Database (JARD), a comprehensive nationwide database that includes SCI patients from specialized SCI centers and rehabilitation hospitals across Japan.

Patients sample: 4,108 SCI cases from JARD were reviewed, excluding 405 cases, patients caused by nontraumatic injuries, patients who were graded as AIS E at admission, and patients without data of AIS at discharge, resulting in 3,703 cases being included in the study. Patient demographics and specific SCI injury characteristics at admission were utilized for model training and prediction.

Outcome measures: Model performance was evaluated based on R2, accuracy, and the weighted Kappa coefficient. Shapley additive explanations (SHAP) values highlighted significant features influencing the model's output.

Methods: The primary outcome was AIS at discharge, treated as a continuous variable (0-4) to capture the ordinal nature and clinical significance of potential misclassifications. Data preprocessing included multicollinearity removal, feature selection using the Boruta algorithm, and iterative imputation for missing data. The dataset was split using the hold-out method with a 7:3 ratio resulting in 2,592 cases for training and 1,111 cases for testing the regression model. A best performing model was defined as the highest R2 using PyCaret's automated model comparison. Final predictions of regression model were discretized to the original AIS categories for clinical interpretation.

Results: The Gradient Boosting Regressor (GBR) was identified as the optimal model. The GBR model showed an R² of 0.869, accuracy of 0.814, and weighted Kappa of 0.940. Eleven key variables, including AIS at admission, the day from injury to admission, and the motor score of L3, were identified as significant based on SHAP values. This model was then adapted into a web application via Streamlit.

Conclusions: We developed a high-accuracy ML model for predicting the AIS at discharge, which effectively captures the ordinal nature of the AIS scale, using 11 key variables. This model demonstrated its performance to provide reliable prognostic information. The model has been integrated into a user-friendly, open-access web application (http://3.138.174.54:8502/). This tool has the potential to aid in resource allocation and enhance treatment for each patient.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发用于预测脊髓损伤患者出院时神经功能预后的机器学习模型和网络应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Spine Journal
Spine Journal 医学-临床神经学
CiteScore
8.20
自引率
6.70%
发文量
680
审稿时长
13.1 weeks
期刊介绍: The Spine Journal, the official journal of the North American Spine Society, is an international and multidisciplinary journal that publishes original, peer-reviewed articles on research and treatment related to the spine and spine care, including basic science and clinical investigations. It is a condition of publication that manuscripts submitted to The Spine Journal have not been published, and will not be simultaneously submitted or published elsewhere. The Spine Journal also publishes major reviews of specific topics by acknowledged authorities, technical notes, teaching editorials, and other special features, Letters to the Editor-in-Chief are encouraged.
期刊最新文献
The cost-effectiveness of physical therapy versus laminectomy for lumbar spinal stenosis: A Markov decision analysis. The New Era of Cost Analysis in Spine Surgery Utilizing Time-Driven Activity Based Costing: A Systematic Review and Introduction of an Enabling Technology Value Index. Endoscopic Spine Surgery: Are We Finally There? A Meta-Analysis of Its Effectiveness Against Conventional and Tubular Microdiscectomy. Failure forces of different interspinous vertebropexy techniques. The Dural Deviation Ratio: A Novel Indicator for Preoperative Differentiation of Intradural Extension in Spinal Dumbbell Tumors Schwannomas Using Axial T2-weighted MRI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1