Detection of Nuclear Blebbing and DNA Leakage in Mammalian Cells by Immunofluorescence.

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES Jove-Journal of Visualized Experiments Pub Date : 2025-01-17 DOI:10.3791/67719
Alannah J DiCintio, Liza A Joudeh, Alan S Waldman
{"title":"Detection of Nuclear Blebbing and DNA Leakage in Mammalian Cells by Immunofluorescence.","authors":"Alannah J DiCintio, Liza A Joudeh, Alan S Waldman","doi":"10.3791/67719","DOIUrl":null,"url":null,"abstract":"<p><p>The nuclear lamina is a network of filaments underlying the nuclear membrane, composed of lamins and lamin-associated proteins. It plays critical roles in nuclear architecture, nuclear pore positioning, gene expression regulation, chromatin organization, DNA replication, and DNA repair. Mutations in genes involved in the expression or post-translational processing of lamin proteins result in genetic disorders known as laminopathies. Specifically, mutations in the LMNA or ZMPSTE24 genes can lead to the accumulation of incompletely processed forms of lamin A that retain farnesyl and methyl groups, which are absent in fully processed lamin A. These incompletely processed lamin A proteins localize to the inner nuclear membrane instead of the nuclear lamina, where mature lamin A resides. Mislocalized lamin proteins profoundly disrupt nuclear function and structure, often resulting in nuclear blebbing. In severe cases, nuclear rupture can occur, causing a loss of compartmentalization and leakage of genomic DNA into the cytosol. Abnormal nuclear structure and compartmentalization loss can be identified through indirect immunofluorescence (IF) on fixed cells. This study outlines such a method, employing specific antibodies against a lamin protein and double-stranded DNA (dsDNA) to simultaneously visualize the nuclear envelope and DNA. This approach enables a rapid assessment of nuclear structural integrity and the potential leakage of nuclear DNA into the cytosol.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 215","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67719","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The nuclear lamina is a network of filaments underlying the nuclear membrane, composed of lamins and lamin-associated proteins. It plays critical roles in nuclear architecture, nuclear pore positioning, gene expression regulation, chromatin organization, DNA replication, and DNA repair. Mutations in genes involved in the expression or post-translational processing of lamin proteins result in genetic disorders known as laminopathies. Specifically, mutations in the LMNA or ZMPSTE24 genes can lead to the accumulation of incompletely processed forms of lamin A that retain farnesyl and methyl groups, which are absent in fully processed lamin A. These incompletely processed lamin A proteins localize to the inner nuclear membrane instead of the nuclear lamina, where mature lamin A resides. Mislocalized lamin proteins profoundly disrupt nuclear function and structure, often resulting in nuclear blebbing. In severe cases, nuclear rupture can occur, causing a loss of compartmentalization and leakage of genomic DNA into the cytosol. Abnormal nuclear structure and compartmentalization loss can be identified through indirect immunofluorescence (IF) on fixed cells. This study outlines such a method, employing specific antibodies against a lamin protein and double-stranded DNA (dsDNA) to simultaneously visualize the nuclear envelope and DNA. This approach enables a rapid assessment of nuclear structural integrity and the potential leakage of nuclear DNA into the cytosol.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
期刊最新文献
A Macrophage-Tumor Spheroid Co-Invasion Assay. Acquisition and Semi-Automated Analysis of Respiratory Muscle Surface Electromyography. Capturing Common Fragile Site Breaks by Native γH2A.X ChIP. Chronic Social Defeat Stress in Early Adolescent Male Mice. Fabricating and Labeling Microbubbles with Fluorescent and Radioactive Tracers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1