Maneesha A Rajora, Chelsea Leung, Juan Chen, Gang Zheng
{"title":"Fabricating and Labeling Microbubbles with Fluorescent and Radioactive Tracers.","authors":"Maneesha A Rajora, Chelsea Leung, Juan Chen, Gang Zheng","doi":"10.3791/67431","DOIUrl":null,"url":null,"abstract":"<p><p>Microbubbles are lipid-shelled, gas-filled particles that have evolved from vascular ultrasound contrast agents into revolutionary cancer therapy platforms. When combined with therapeutic focused ultrasound (FUS), they can safely and locally overcome physiological barriers (e.g., blood-brain barrier), deliver drugs to otherwise inaccessible cancers (e.g., glioblastoma and pancreatic cancer), and treat neurodegenerative diseases. The therapeutic arsenal of microbubble-FUS is advancing in new directions, including synergistic combination radiotherapy, multimodal imaging, and all-in-one drug loading and delivery from microbubble shells. Labeling microbubbles with radiotracers is key to establishing these expanded theranostic capabilities. However, existing microbubble radiolabeling strategies rely on purification methodologies known to perturb microbubble physicochemical properties, use short-lived radioisotopes, and do not always yield stable chelation. Collectively, this creates ambiguity surrounding the accuracy of microbubble radioimaging and the efficiency of tumor radioisotope delivery. This protocol describes a new one-pot, purification-free microbubble labeling methodology that preserves microbubble physicochemical properties while achieving >95% radioisotope chelation efficiency. It is versatile and can be applied successfully across custom and commercial microbubble formulations with differing acyl lipid chain length, charge, and chelator/probe (porphyrin, DTPA, DiI) composition. It can be adaptively applied during ground-up microbubble fabrication and to pre-made microbubble formulations with modular customizability of fluorescence and multimodal fluorescence/radioactive properties. Accordingly, this flexible method enables the production of tailored, traceable (radio, fluorescent, or radio/fluorescent active) multimodal microbubbles that are useful for advancing mechanistic, imaging, and therapeutic microbubble-FUS applications.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 215","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67431","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Microbubbles are lipid-shelled, gas-filled particles that have evolved from vascular ultrasound contrast agents into revolutionary cancer therapy platforms. When combined with therapeutic focused ultrasound (FUS), they can safely and locally overcome physiological barriers (e.g., blood-brain barrier), deliver drugs to otherwise inaccessible cancers (e.g., glioblastoma and pancreatic cancer), and treat neurodegenerative diseases. The therapeutic arsenal of microbubble-FUS is advancing in new directions, including synergistic combination radiotherapy, multimodal imaging, and all-in-one drug loading and delivery from microbubble shells. Labeling microbubbles with radiotracers is key to establishing these expanded theranostic capabilities. However, existing microbubble radiolabeling strategies rely on purification methodologies known to perturb microbubble physicochemical properties, use short-lived radioisotopes, and do not always yield stable chelation. Collectively, this creates ambiguity surrounding the accuracy of microbubble radioimaging and the efficiency of tumor radioisotope delivery. This protocol describes a new one-pot, purification-free microbubble labeling methodology that preserves microbubble physicochemical properties while achieving >95% radioisotope chelation efficiency. It is versatile and can be applied successfully across custom and commercial microbubble formulations with differing acyl lipid chain length, charge, and chelator/probe (porphyrin, DTPA, DiI) composition. It can be adaptively applied during ground-up microbubble fabrication and to pre-made microbubble formulations with modular customizability of fluorescence and multimodal fluorescence/radioactive properties. Accordingly, this flexible method enables the production of tailored, traceable (radio, fluorescent, or radio/fluorescent active) multimodal microbubbles that are useful for advancing mechanistic, imaging, and therapeutic microbubble-FUS applications.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.