{"title":"Deep learning assisted prediction of osteogenic capability of orthopedic implant surfaces based on early cell morphology.","authors":"Andi Li, Xinyi Li, Zhiwen Zhang, Zihui Huang, Liqiang He, Yuhang Yang, Jiapeng Dong, Shuting Cai, Xujie Liu, Hongli Zhao, Yan He","doi":"10.1016/j.actbio.2025.01.059","DOIUrl":null,"url":null,"abstract":"<p><p>The surface modification of titanium (Ti) and its alloys is crucial for improving their osteogenic capability, as their bio-inert nature limits effective osseointegration despite their prevalent use in orthopedic implants. However, these modification methods produce varied surface properties, making it challenging to standardize criteria for assessing the osteogenic capacity of implant surfaces. Additionally, traditional evaluation experiments are time-consuming and inefficient. To overcome these limitations, this study introduced a high-throughput, efficient screening method for assessing the osteogenic capability of implant surfaces based on early cell morphology and deep learning. The Orthopedic Implants-Osteogenic Differentiation Network (OIODNet) was developed using early cell morphology images and corresponding alkaline phosphatase (ALP) activity values from cells cultured on Ti and its alloy surfaces, achieving performance metrics exceeding 0.98 across all six evaluation parameters. Validation through metal-polyphenol network (MPN) coatings and cell experiments demonstrated a strong correlation between OIODNet's predictions and actual ALP activity outcomes, confirming its accuracy in predicting osteogenic potential based on early cell morphology. The Osteogenic Predictor application offers an intuitive tool for predicting the osteogenic capacity of implant surfaces. Overall, this research highlights the potential to accelerate progress at the intersection of artificial intelligence and biomaterials, paving the way for more efficient screening of osteogenic capabilities in orthopedic implants. STATEMENT OF SIGNIFICANCE: By leveraging deep learning, this study introduces the Orthopedic Implants-Osteogenic Differentiation Network (OIODNet), which utilizes early cell morphology data and alkaline phosphatase (ALP) activity values to provide a high-throughput, accurate method for predicting osteogenic capability. With performance metrics exceeding 0.98, OIODNet's accuracy was further validated through experiments involving metal-polyphenol network (MPN) coatings, showing a strong correlation between the model's predictions and experimental outcomes. This research offers a powerful tool for more efficient screening of implant surfaces, marking a transformative step in the integration of artificial intelligence and biomaterials, while opening new avenues for advancing orthopedic implant technologies.</p>","PeriodicalId":93848,"journal":{"name":"Acta biomaterialia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta biomaterialia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.actbio.2025.01.059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The surface modification of titanium (Ti) and its alloys is crucial for improving their osteogenic capability, as their bio-inert nature limits effective osseointegration despite their prevalent use in orthopedic implants. However, these modification methods produce varied surface properties, making it challenging to standardize criteria for assessing the osteogenic capacity of implant surfaces. Additionally, traditional evaluation experiments are time-consuming and inefficient. To overcome these limitations, this study introduced a high-throughput, efficient screening method for assessing the osteogenic capability of implant surfaces based on early cell morphology and deep learning. The Orthopedic Implants-Osteogenic Differentiation Network (OIODNet) was developed using early cell morphology images and corresponding alkaline phosphatase (ALP) activity values from cells cultured on Ti and its alloy surfaces, achieving performance metrics exceeding 0.98 across all six evaluation parameters. Validation through metal-polyphenol network (MPN) coatings and cell experiments demonstrated a strong correlation between OIODNet's predictions and actual ALP activity outcomes, confirming its accuracy in predicting osteogenic potential based on early cell morphology. The Osteogenic Predictor application offers an intuitive tool for predicting the osteogenic capacity of implant surfaces. Overall, this research highlights the potential to accelerate progress at the intersection of artificial intelligence and biomaterials, paving the way for more efficient screening of osteogenic capabilities in orthopedic implants. STATEMENT OF SIGNIFICANCE: By leveraging deep learning, this study introduces the Orthopedic Implants-Osteogenic Differentiation Network (OIODNet), which utilizes early cell morphology data and alkaline phosphatase (ALP) activity values to provide a high-throughput, accurate method for predicting osteogenic capability. With performance metrics exceeding 0.98, OIODNet's accuracy was further validated through experiments involving metal-polyphenol network (MPN) coatings, showing a strong correlation between the model's predictions and experimental outcomes. This research offers a powerful tool for more efficient screening of implant surfaces, marking a transformative step in the integration of artificial intelligence and biomaterials, while opening new avenues for advancing orthopedic implant technologies.