{"title":"Biochemical and Structural Studies of Protein Tyrosine Phosphatase PTP-PEST (PTPN12) in Search of Small Molecule Inhibitors","authors":"Delna Johnson, Madhulika Dixit, Sivapriya Kirubakaran","doi":"10.1111/cbdd.70058","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>PTP-PEST (also known as PTPN12) regulates cellular signaling and transduction pathways by dephosphorylating its substrate. PTP-PEST is considered an important drug target owing to its involvement in cancer progression and myocardial injury. Till now only a few inhibitors are currently being studied in the inhibition of PTP-PEST, majorly belonging to the class of metal-based drugs. In this study, we aimed to investigate small molecules that could potentially inhibit PTP-PEST for further development of PTP-PEST inhibitors. As an approach, we used an in silico molecular docking technique to screen an in-house synthesized molecular library. Further, we validated the docking results by in vitro inhibition screening of the best molecules using the purified catalytic domain of human PTP-PEST, which was over-expressed in <i>E.coli</i>. We identified a myo-inositol based derivative, J1-65, which binds to PTP-PEST and results in the competitive inhibition of the protein. Further, we confirmed this protein-ligand binding using binding affinity studies based on protein thermal shift assay and in silico molecular dynamic simulations. Our efforts to discover a novel scaffold for inhibiting hPTP-PEST mark a crucial stride in laying the groundwork for the future development of selective PTP-PEST inhibitors.</p>\n </div>","PeriodicalId":143,"journal":{"name":"Chemical Biology & Drug Design","volume":"105 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Biology & Drug Design","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70058","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
PTP-PEST (also known as PTPN12) regulates cellular signaling and transduction pathways by dephosphorylating its substrate. PTP-PEST is considered an important drug target owing to its involvement in cancer progression and myocardial injury. Till now only a few inhibitors are currently being studied in the inhibition of PTP-PEST, majorly belonging to the class of metal-based drugs. In this study, we aimed to investigate small molecules that could potentially inhibit PTP-PEST for further development of PTP-PEST inhibitors. As an approach, we used an in silico molecular docking technique to screen an in-house synthesized molecular library. Further, we validated the docking results by in vitro inhibition screening of the best molecules using the purified catalytic domain of human PTP-PEST, which was over-expressed in E.coli. We identified a myo-inositol based derivative, J1-65, which binds to PTP-PEST and results in the competitive inhibition of the protein. Further, we confirmed this protein-ligand binding using binding affinity studies based on protein thermal shift assay and in silico molecular dynamic simulations. Our efforts to discover a novel scaffold for inhibiting hPTP-PEST mark a crucial stride in laying the groundwork for the future development of selective PTP-PEST inhibitors.
期刊介绍:
Chemical Biology & Drug Design is a peer-reviewed scientific journal that is dedicated to the advancement of innovative science, technology and medicine with a focus on the multidisciplinary fields of chemical biology and drug design. It is the aim of Chemical Biology & Drug Design to capture significant research and drug discovery that highlights new concepts, insight and new findings within the scope of chemical biology and drug design.