Leandro Cid Gomes, Sindhujaa Vajravel, William Siljebo, Anup Rana, Tomas Gustafsson, Asimina Bairaktari, Marianne Thomsen, Henrik Ottosson
{"title":"Multiliter-Scale Photosensitized Dimerization of Isoprene to Sustainable Aviation Fuel Precursors","authors":"Leandro Cid Gomes, Sindhujaa Vajravel, William Siljebo, Anup Rana, Tomas Gustafsson, Asimina Bairaktari, Marianne Thomsen, Henrik Ottosson","doi":"10.1021/acssuschemeng.4c08755","DOIUrl":null,"url":null,"abstract":"Synthetic routes to sustainable aviation fuels are needed to mitigate the environmental impacts of the aviation sector. Among several emerging methods, the use of light-driven reactions benefits from milder conditions and the possibility of using sunlight to directly irradiate reactants or, alternatively, to power LEDs with a high and constant light intensity. Dinaphthylketone-photosensitized dimerization of isoprene can afford C<sub>10</sub> cycloalkenes that, after hydrogenation, meet the required properties for jet fuels (strongly resembling Jet-A). Isoprene can be photobiologically produced by metabolically engineered cyanobacteria from the conversion of CO<sub>2</sub> and water by utilizing solar light, contributing to a carbon-neutral process. The scale-up of such a combined photobiological–photochemical route is essential to bring it closer to the commercial level. Herein, we present the optimization and scale-up of the photosensitized dimerization of isoprene. By designing different reactor setups, flow versus no-flow conditions, and LED lamps (λ<sub>max</sub> = 365 nm) versus sunlight as the light source, we reached a 2.6 L scale able to produce 61 mL of isoprene dimers per hour, which represents a 14-fold higher productivity compared to our previous results at a smaller scale. We also demonstrated a continuous feed process that converted isoprene into dimers with a 95% yield under LED irradiation. These advancements highlight the potential of light-driven processes to contribute to the energy transition and production of sustainable aviation fuels, making them more viable for commercial use and significantly reducing the environmental impact of the aviation sector.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"38 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c08755","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic routes to sustainable aviation fuels are needed to mitigate the environmental impacts of the aviation sector. Among several emerging methods, the use of light-driven reactions benefits from milder conditions and the possibility of using sunlight to directly irradiate reactants or, alternatively, to power LEDs with a high and constant light intensity. Dinaphthylketone-photosensitized dimerization of isoprene can afford C10 cycloalkenes that, after hydrogenation, meet the required properties for jet fuels (strongly resembling Jet-A). Isoprene can be photobiologically produced by metabolically engineered cyanobacteria from the conversion of CO2 and water by utilizing solar light, contributing to a carbon-neutral process. The scale-up of such a combined photobiological–photochemical route is essential to bring it closer to the commercial level. Herein, we present the optimization and scale-up of the photosensitized dimerization of isoprene. By designing different reactor setups, flow versus no-flow conditions, and LED lamps (λmax = 365 nm) versus sunlight as the light source, we reached a 2.6 L scale able to produce 61 mL of isoprene dimers per hour, which represents a 14-fold higher productivity compared to our previous results at a smaller scale. We also demonstrated a continuous feed process that converted isoprene into dimers with a 95% yield under LED irradiation. These advancements highlight the potential of light-driven processes to contribute to the energy transition and production of sustainable aviation fuels, making them more viable for commercial use and significantly reducing the environmental impact of the aviation sector.
期刊介绍:
ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment.
The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.