Catalytic production of aviation jet biofuels from biomass: a review

IF 15 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Environmental Chemistry Letters Pub Date : 2025-02-03 DOI:10.1007/s10311-024-01806-3
Ahmed E. Mansy, Samuel Daniel, Cedric Karel Fonzeu Monguen, Hao Wang, Ahmed I. Osman, Zhen-Yu Tian
{"title":"Catalytic production of aviation jet biofuels from biomass: a review","authors":"Ahmed E. Mansy, Samuel Daniel, Cedric Karel Fonzeu Monguen, Hao Wang, Ahmed I. Osman, Zhen-Yu Tian","doi":"10.1007/s10311-024-01806-3","DOIUrl":null,"url":null,"abstract":"<p>The aviation sector is a major emitter of fossil fuel-derived carbon dioxide contributing to global warming. For instance, jet fuel consumed by the aviation industry is 1.5–1.7 billion barrels per year, resulting in 705 million metric tons of carbon dioxide emissions. Aircraft manufacturers have set ambitious goals, aiming for carbon-free growth post-2020 and a 50% reduction in greenhouse gas emissions by 2030. This issue can be solved by replacing fossil fuels with biofuels produced from modern biomass, thus meeting the carbon neutral objective. Here, we review the technologies to convert biomass into jet biofuel with focus on reactants, catalysts, and the chemistry of combustion. Reactants include alcohols, oil, esters, fatty acids, gas and sugars. Catalysts include Fischer–Tropsch catalysts, palladium, platinum, ruthenium, nickel, and molybdenum. The utilization of jet biofuels could potentially reduce greenhouse gas emissions by up to 80%. We also discuss economic implications.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"39 1","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10311-024-01806-3","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The aviation sector is a major emitter of fossil fuel-derived carbon dioxide contributing to global warming. For instance, jet fuel consumed by the aviation industry is 1.5–1.7 billion barrels per year, resulting in 705 million metric tons of carbon dioxide emissions. Aircraft manufacturers have set ambitious goals, aiming for carbon-free growth post-2020 and a 50% reduction in greenhouse gas emissions by 2030. This issue can be solved by replacing fossil fuels with biofuels produced from modern biomass, thus meeting the carbon neutral objective. Here, we review the technologies to convert biomass into jet biofuel with focus on reactants, catalysts, and the chemistry of combustion. Reactants include alcohols, oil, esters, fatty acids, gas and sugars. Catalysts include Fischer–Tropsch catalysts, palladium, platinum, ruthenium, nickel, and molybdenum. The utilization of jet biofuels could potentially reduce greenhouse gas emissions by up to 80%. We also discuss economic implications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Chemistry Letters
Environmental Chemistry Letters 环境科学-工程:环境
CiteScore
32.00
自引率
7.00%
发文量
175
审稿时长
2 months
期刊介绍: Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.
期刊最新文献
Microplastic characteristics, transport, risks, and remediation in groundwater: a review Geochemistry of vegetation fires using levoglucosan: a review Bioenergy production from wastewater using cost-effective ceramic membranes: a review Catalytic production of aviation jet biofuels from biomass: a review Microbioplastics sources, mobility, impact, and management: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1