{"title":"Long-term effectiveness of heavy metal(loid) stabilization: Development of an assessing method","authors":"Yanqing Liu, Zewen Wang, Xiao Tan, Deyi Hou, Liping Fang, Aijun Lin, Fangbai Li, Guilan Duan","doi":"10.1016/j.envpol.2025.125798","DOIUrl":null,"url":null,"abstract":"In-situ stabilization technology offers a cost-effective solution for the remediation of heavy metal(loid) (HM) contaminated soils. However, the lack of a reliable method to assess the long-term effectiveness of HM stabilization significantly impedes the practical application of this technology. To address this gap, we have devised an innovative method that integrates acid rain leaching with dry-wet alternation to evaluate the long-term effectiveness of HM stabilization. We initiate the acid rain leaching process by adding 200 mL of a H<sub>2</sub>SO<sub>4</sub> and HNO<sub>3</sub> solution, with a pH of 3.20, to 20 g of tested soil and stirring at 30 ± 2 rpm for 2 hours. After decanting the supernatant, we dried the soil in a water bath at 60°C. Then repeat this leaching and drying cycle until HM in the leachate either exceed the preset thresholds or become stable. The time-dependent effectiveness of the stabilization is calculated based on the annual average rainfall, and the number of cycles. By using multiple types of soils contaminated with various HM, we demonstrated that this method is versatile and not limited by the types of soil or HM, and exhibits excellent multi-laboratory precision. The method exhibited excellent multi-laboratory precision, with over 82% of samples having a relative standard deviation (RSD) of less than 30%. This method is of significance for not only mitigating the risk of re-contamination from HM reactivation post-remediation, but also broadening the disposal options for remediated soils beyond landfill, thereby fostering environmentally sustainable practices.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"8 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2025.125798","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In-situ stabilization technology offers a cost-effective solution for the remediation of heavy metal(loid) (HM) contaminated soils. However, the lack of a reliable method to assess the long-term effectiveness of HM stabilization significantly impedes the practical application of this technology. To address this gap, we have devised an innovative method that integrates acid rain leaching with dry-wet alternation to evaluate the long-term effectiveness of HM stabilization. We initiate the acid rain leaching process by adding 200 mL of a H2SO4 and HNO3 solution, with a pH of 3.20, to 20 g of tested soil and stirring at 30 ± 2 rpm for 2 hours. After decanting the supernatant, we dried the soil in a water bath at 60°C. Then repeat this leaching and drying cycle until HM in the leachate either exceed the preset thresholds or become stable. The time-dependent effectiveness of the stabilization is calculated based on the annual average rainfall, and the number of cycles. By using multiple types of soils contaminated with various HM, we demonstrated that this method is versatile and not limited by the types of soil or HM, and exhibits excellent multi-laboratory precision. The method exhibited excellent multi-laboratory precision, with over 82% of samples having a relative standard deviation (RSD) of less than 30%. This method is of significance for not only mitigating the risk of re-contamination from HM reactivation post-remediation, but also broadening the disposal options for remediated soils beyond landfill, thereby fostering environmentally sustainable practices.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.