Xuan Ni, Chicheng Yan, Bingbing Guo, Ziwei Han, Changzheng Cui
{"title":"Occurrence, predictive models and potential health risk assessment of viable but non-culturable (VBNC) pathogens in drinking water","authors":"Xuan Ni, Chicheng Yan, Bingbing Guo, Ziwei Han, Changzheng Cui","doi":"10.1016/j.envpol.2025.125794","DOIUrl":null,"url":null,"abstract":"Viable but non-culturable (VBNC) pathogens are prevalent in drinking water systems and can resuscitate under favorable conditions, thereby posing significant public health risks. This study investigated the occurrence of VBNC <em>Escherichia coli</em> and <em>Pseudomonas aeruginosa</em> in source water, tap water, and potable water in eastern China, using propidium monoazide-quantitative PCR and culture-based methods. Multiple linear regression (MLR) and artificial neural network (ANN) models were developed based on conventional water quality indicators to predict VBNC pathogen concentrations. The results indicated that drinking water treatment plants effectively reduced VBNC pathogens by 1–3 log units, however, concentrations ranging from 10<sup>0</sup> to 10<sup>2</sup> CFU/100 mL remained in tap and potable water, with detection rates between 83.33% and 100%. Furthermore, potable water contained a higher concentration of VBNC pathogens than tap water, suggesting a potential risk of microbial leakage from water dispensers. The constructed ANN models outperformed than MLR models, with R values greater than 0.8, indicating a strong correlation between measured values and model predictions for VBNC pathogens. ANN models also demonstrated superior accuracy than MLR models in predicting VBNC pathogens across different type of drinking water, achieving accuracies of 88.89% for <em>Escherichia coli</em> and 77.78% for <em>Pseudomonas aeruginosa</em>. The QMRA revealed that annual infection risks and disease burdens from VBNC pathogens in potable water were greater than those in tap water, with both exceeding acceptable safety thresholds. This study emphasizes that the risks posed by VBNC pathogens deserve attention and model predictions provide critical evidence for health risk identification.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"61 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2025.125794","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Viable but non-culturable (VBNC) pathogens are prevalent in drinking water systems and can resuscitate under favorable conditions, thereby posing significant public health risks. This study investigated the occurrence of VBNC Escherichia coli and Pseudomonas aeruginosa in source water, tap water, and potable water in eastern China, using propidium monoazide-quantitative PCR and culture-based methods. Multiple linear regression (MLR) and artificial neural network (ANN) models were developed based on conventional water quality indicators to predict VBNC pathogen concentrations. The results indicated that drinking water treatment plants effectively reduced VBNC pathogens by 1–3 log units, however, concentrations ranging from 100 to 102 CFU/100 mL remained in tap and potable water, with detection rates between 83.33% and 100%. Furthermore, potable water contained a higher concentration of VBNC pathogens than tap water, suggesting a potential risk of microbial leakage from water dispensers. The constructed ANN models outperformed than MLR models, with R values greater than 0.8, indicating a strong correlation between measured values and model predictions for VBNC pathogens. ANN models also demonstrated superior accuracy than MLR models in predicting VBNC pathogens across different type of drinking water, achieving accuracies of 88.89% for Escherichia coli and 77.78% for Pseudomonas aeruginosa. The QMRA revealed that annual infection risks and disease burdens from VBNC pathogens in potable water were greater than those in tap water, with both exceeding acceptable safety thresholds. This study emphasizes that the risks posed by VBNC pathogens deserve attention and model predictions provide critical evidence for health risk identification.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.