Jie Liu, Bo Zhao, Longfei Wang, Wenlong Zhang, Tingchao Zan, Zhenguo Chen, Yi Li
{"title":"Occurrence, fate, and transport of N-nitrosamines and precursors in sewage treatment plants and receiving rivers in a highly urbanized basin","authors":"Jie Liu, Bo Zhao, Longfei Wang, Wenlong Zhang, Tingchao Zan, Zhenguo Chen, Yi Li","doi":"10.1016/j.envpol.2025.125808","DOIUrl":null,"url":null,"abstract":"<em>N</em>-nitrosamines (NAs), highly carcinogenic disinfection by-products, were frequently detected in raw sewage, sewage treatment plants (STPs), and receiving rivers. This study investigated five NAs, including <em>N</em>-nitrosodimethylamine (NDMA), <em>N</em>-nitrosodiethylamine (NDEA), <em>N</em>-nitrosomorpholine (NMOR), <em>N</em>-nitrosodi-n-butylamine (NDBA), and <em>N</em>-nitrosopiperidine (NPIP), and their formation potentials (FPs) in a highly urbanized basin. The results showed that total NAs and their FPs ranged from 101 to 141 ng/L and 72.6 to 203 ng/L in the influent, implying that NAs and their FPs in the raw sewage might be affected by the sewage type, especially for NDMA (up to 103 ng/L) influenced by industrial wastewater. NDMA FP was positively correlated with NH<sub>4</sub><sup>+</sup>, TN, and TOC, while NDMA, NDEA, and NDEA FP were strongly associated with heavy metals, especially Hg, implying factories using Hg as potential sources. The biological treatment effectively removed NAs in STPs, but NMOR showed the weakest biological removal. In addition, the removal efficiency of NDMA was related to the type of biological treatment in the following order: Modified anaerobic-anoxic-oxic-membrane-bioreactor (Modified AAO-MBR) (81.2%) > AAO (60.1%) > Oxidation ditch (53.3%) > UNITANK (46.5%) > Modified AAO (25.8%). After treatment, total NAs (mainly NDMA and NMOR) in the effluent still ranged from 7.09 to 31.8 ng/L. In the receiving rivers, although NMOR was mainly photodegraded, <em>Patescibacteria</em> discharged from STPs was the first time to be identified as a potential contributor for NMOR. NDMA was primarily degraded through photodegradation and biodegradation, NDMA FP was probably biodegraded, with <em>Proteobacteria</em> probably contributing to the biodegradation of NDMA and NDMA FP.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"39 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2025.125808","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
N-nitrosamines (NAs), highly carcinogenic disinfection by-products, were frequently detected in raw sewage, sewage treatment plants (STPs), and receiving rivers. This study investigated five NAs, including N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosomorpholine (NMOR), N-nitrosodi-n-butylamine (NDBA), and N-nitrosopiperidine (NPIP), and their formation potentials (FPs) in a highly urbanized basin. The results showed that total NAs and their FPs ranged from 101 to 141 ng/L and 72.6 to 203 ng/L in the influent, implying that NAs and their FPs in the raw sewage might be affected by the sewage type, especially for NDMA (up to 103 ng/L) influenced by industrial wastewater. NDMA FP was positively correlated with NH4+, TN, and TOC, while NDMA, NDEA, and NDEA FP were strongly associated with heavy metals, especially Hg, implying factories using Hg as potential sources. The biological treatment effectively removed NAs in STPs, but NMOR showed the weakest biological removal. In addition, the removal efficiency of NDMA was related to the type of biological treatment in the following order: Modified anaerobic-anoxic-oxic-membrane-bioreactor (Modified AAO-MBR) (81.2%) > AAO (60.1%) > Oxidation ditch (53.3%) > UNITANK (46.5%) > Modified AAO (25.8%). After treatment, total NAs (mainly NDMA and NMOR) in the effluent still ranged from 7.09 to 31.8 ng/L. In the receiving rivers, although NMOR was mainly photodegraded, Patescibacteria discharged from STPs was the first time to be identified as a potential contributor for NMOR. NDMA was primarily degraded through photodegradation and biodegradation, NDMA FP was probably biodegraded, with Proteobacteria probably contributing to the biodegradation of NDMA and NDMA FP.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.