{"title":"The prevalence of antibiotic-resistant fecal bacteria in recreational aquatic environments: Phenotypic and molecular approach","authors":"Łukasz Kubera , Damian Rolbiecki , Monika Harnisz , Ewa Kotlarska , Piotr Perliński","doi":"10.1016/j.envpol.2025.125793","DOIUrl":null,"url":null,"abstract":"<div><div>The rising incidence of antibiotic resistance poses a significant threat to public health. In recent years the widespread use of antibiotics has led to an increase in the concentration of antibiotic-resistant bacteria also in natural environments. The study was conducted in bathing areas three recreational lakes located in the Zaborski Landscape Park in northern Poland. Water samples were collected in three parallel repetitions in April, June and September 2022. Our study indicates that anthropopressure connected with tourism and recreation promotes the growth of fecal bacteria, including antibiotic-resistant strains, whose significant accumulation was recorded in September, the month marking the end of summer vacation. Antibiotic resistance profiles showed that isolated strains of fecal bacteria were resistant to beta-lactam antibiotics. The highest percentage of <em>Escherichia coli</em> strains showed resistance to cefepime (39.1%), and enterococci to imipenem (26.9%). The amplification of resistance genes confirmed the presence of only selected <em>bla</em> genes in the examined strains of fecal bacteria. The <em>bla</em><sub>TEM</sub> gene was found in 14 strains of <em>Enterococcus faecium</em> (82.4%), in all 4 isolates of <em>Enterococcus faecalis</em>, and in 4 out of 5 unspecified strains of fecal streptococci. In <em>Escherichia coli</em> only <em>bla</em><sub>CTX</sub> gene was identified in one strain. The presence of <em>bla</em><sub>TEM</sub> genes was strongly correlated with the concentration of fecal bacteria, it can therefore be assumed that the presence of resistance genes was caused by direct contamination of the studied lakes with feces containing antibiotic-resistant bacteria, presumably without contamination from other sources. Resistance genes found in the control strains from sewage treatment plants were not identified in the studied isolates. Antibiotic resistance genetic markers found in strains isolated from wastewater may prove helpful in determining the sources of contamination of natural aquatic ecosystems with antibiotic-resistant fecal bacteria and thus ensure efficient management of projects aimed at making these waterbodies available for public use.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"368 ","pages":"Article 125793"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125001666","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The rising incidence of antibiotic resistance poses a significant threat to public health. In recent years the widespread use of antibiotics has led to an increase in the concentration of antibiotic-resistant bacteria also in natural environments. The study was conducted in bathing areas three recreational lakes located in the Zaborski Landscape Park in northern Poland. Water samples were collected in three parallel repetitions in April, June and September 2022. Our study indicates that anthropopressure connected with tourism and recreation promotes the growth of fecal bacteria, including antibiotic-resistant strains, whose significant accumulation was recorded in September, the month marking the end of summer vacation. Antibiotic resistance profiles showed that isolated strains of fecal bacteria were resistant to beta-lactam antibiotics. The highest percentage of Escherichia coli strains showed resistance to cefepime (39.1%), and enterococci to imipenem (26.9%). The amplification of resistance genes confirmed the presence of only selected bla genes in the examined strains of fecal bacteria. The blaTEM gene was found in 14 strains of Enterococcus faecium (82.4%), in all 4 isolates of Enterococcus faecalis, and in 4 out of 5 unspecified strains of fecal streptococci. In Escherichia coli only blaCTX gene was identified in one strain. The presence of blaTEM genes was strongly correlated with the concentration of fecal bacteria, it can therefore be assumed that the presence of resistance genes was caused by direct contamination of the studied lakes with feces containing antibiotic-resistant bacteria, presumably without contamination from other sources. Resistance genes found in the control strains from sewage treatment plants were not identified in the studied isolates. Antibiotic resistance genetic markers found in strains isolated from wastewater may prove helpful in determining the sources of contamination of natural aquatic ecosystems with antibiotic-resistant fecal bacteria and thus ensure efficient management of projects aimed at making these waterbodies available for public use.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.