Katarzyna Ciuba, Aleksandra Piotrowska, Debadeep Chaudhury, Bondita Dehingia, Eryk Duński, Rüdiger Behr, Karolina Soroczyńska, Małgorzata Czystowska-Kuźmicz, Misbah Abbas, Edyta Bulanda, Sylwia Gawlik-Zawiślak, Sylwia Pietrzak, Izabela Figiel, Jakub Włodarczyk, Alexei Verkhratsky, Marcin Niedbała, Wojciech Kaspera, Tomasz Wypych, Bartosz Wilczyński, Aleksandra Pękowska
{"title":"Molecular signature of primate astrocytes reveals pathways and regulatory changes contributing to human brain evolution","authors":"Katarzyna Ciuba, Aleksandra Piotrowska, Debadeep Chaudhury, Bondita Dehingia, Eryk Duński, Rüdiger Behr, Karolina Soroczyńska, Małgorzata Czystowska-Kuźmicz, Misbah Abbas, Edyta Bulanda, Sylwia Gawlik-Zawiślak, Sylwia Pietrzak, Izabela Figiel, Jakub Włodarczyk, Alexei Verkhratsky, Marcin Niedbała, Wojciech Kaspera, Tomasz Wypych, Bartosz Wilczyński, Aleksandra Pękowska","doi":"10.1016/j.stem.2024.12.011","DOIUrl":null,"url":null,"abstract":"Astrocytes contribute to the development and regulation of the higher-level functions of the brain, the critical targets of evolution. However, how astrocytes evolve in primates is unsettled. Here, we obtain human, chimpanzee, and macaque induced pluripotent stem-cell-derived astrocytes (iAstrocytes). Human iAstrocytes are bigger and more complex than the non-human primate iAstrocytes. We identify new loci contributing to the increased human astrocyte. We show that genes and pathways implicated in long-range intercellular signaling are activated in the human iAstrocytes and partake in controlling iAstrocyte complexity. Genes downregulated in human iAstrocytes frequently relate to neurological disorders and were decreased in adult brain samples. Through regulome analysis and machine learning, we uncover that functional activation of enhancers coincides with a previously unappreciated, pervasive gain of “stripe” transcription factor binding sites. Altogether, we reveal the transcriptomic signature of primate astrocyte evolution and a mechanism driving the acquisition of the regulatory potential of enhancers.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"84 1","pages":""},"PeriodicalIF":19.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2024.12.011","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Astrocytes contribute to the development and regulation of the higher-level functions of the brain, the critical targets of evolution. However, how astrocytes evolve in primates is unsettled. Here, we obtain human, chimpanzee, and macaque induced pluripotent stem-cell-derived astrocytes (iAstrocytes). Human iAstrocytes are bigger and more complex than the non-human primate iAstrocytes. We identify new loci contributing to the increased human astrocyte. We show that genes and pathways implicated in long-range intercellular signaling are activated in the human iAstrocytes and partake in controlling iAstrocyte complexity. Genes downregulated in human iAstrocytes frequently relate to neurological disorders and were decreased in adult brain samples. Through regulome analysis and machine learning, we uncover that functional activation of enhancers coincides with a previously unappreciated, pervasive gain of “stripe” transcription factor binding sites. Altogether, we reveal the transcriptomic signature of primate astrocyte evolution and a mechanism driving the acquisition of the regulatory potential of enhancers.
期刊介绍:
Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.