Rafael de Oliveira, Elisa Barreto, Thais B. Zanata, Francisco Tobar, Tatiana Santander, María José Gavilanes, Catherine H. Graham, Isabela G. Varassin
{"title":"Niche packing, but not niche expansion, explains the co-occurrence of hummingbirds-visited plants","authors":"Rafael de Oliveira, Elisa Barreto, Thais B. Zanata, Francisco Tobar, Tatiana Santander, María José Gavilanes, Catherine H. Graham, Isabela G. Varassin","doi":"10.1111/ecog.07440","DOIUrl":null,"url":null,"abstract":"Tropical mountains often harbour high species richness. Yet the mechanisms behind such high richness remain poorly understood. One prominent hypothesis for high species richness is niche partitioning, which reduces competition and promotes coexistence. Here, we evaluate niche structure and specialisation of plant species based on the floral traits related to pollination interactions across an elevational gradient in the northern Andes. Niche structure can vary among sites, either expanding or contracting, or becoming more or less packed. We sampled eleven communities of hummingbird-visited plants along an elevation gradient in the Ecuadorian Andes and measured a series of functional traits associated with hummingbird pollination. We used the traits of all co-occurring species to calculate community weighted means, functional richness, and mean nearest neighbour distances and evaluated how they varied across elevation. Additionally, we measured specialisation based on plant–hummingbird interaction records to assess if packing is associated with narrower resource use or greater niche overlap. Species and functional richness were constant along the elevation gradient; however, niche packing was stronger at mid-elevation. We found changes in network specialisation, where the least specialised communities were those with higher niche packing. These results suggest that traits related to pollination and plant reproduction help to explain species co-occurrence and specialisation.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"7 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/ecog.07440","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Tropical mountains often harbour high species richness. Yet the mechanisms behind such high richness remain poorly understood. One prominent hypothesis for high species richness is niche partitioning, which reduces competition and promotes coexistence. Here, we evaluate niche structure and specialisation of plant species based on the floral traits related to pollination interactions across an elevational gradient in the northern Andes. Niche structure can vary among sites, either expanding or contracting, or becoming more or less packed. We sampled eleven communities of hummingbird-visited plants along an elevation gradient in the Ecuadorian Andes and measured a series of functional traits associated with hummingbird pollination. We used the traits of all co-occurring species to calculate community weighted means, functional richness, and mean nearest neighbour distances and evaluated how they varied across elevation. Additionally, we measured specialisation based on plant–hummingbird interaction records to assess if packing is associated with narrower resource use or greater niche overlap. Species and functional richness were constant along the elevation gradient; however, niche packing was stronger at mid-elevation. We found changes in network specialisation, where the least specialised communities were those with higher niche packing. These results suggest that traits related to pollination and plant reproduction help to explain species co-occurrence and specialisation.
期刊介绍:
ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem.
Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography.
Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.