{"title":"Continuous Synthesis of 1,3,2-Dioxathiolane 2,2-Dioxide (DTD) by Hydrogen Peroxide with Titanium Silicalite-1 Catalyst Using a Fixed-Bed Reactor","authors":"Zunchao Liu, Tianlai Wang, Jianing Li, Xiangmin Tian, Cunfei Ma, Jingnan Zhao, Qingwei Meng","doi":"10.1021/acs.oprd.4c00482","DOIUrl":null,"url":null,"abstract":"1,3,2-Dioxathiolane 2,2-dioxide (DTD) plays a significant role as an electrolyte additive in lithium-ion batteries. It can enhance battery performance, stability, and safety. Additionally, it is a commonly used hydroxylation reagent in organic chemistry. This paper presents a highly efficient, safe preparation, and environmentally friendly continuous DTD synthesis process that does not require catalyst separation. A fixed-bed reactor was constructed with spherical TS-1 as the catalyst and H<sub>2</sub>O<sub>2</sub> as the oxidizer. Under optimized reaction conditions, efficient oxidation of ethylene sulfite (ES) was achieved using dimethyl carbonate as a solvent. The process involved controlling the reaction temperatures at gradients of 10 and 5 °C, respectively, maintaining a molar ratio of H<sub>2</sub>O<sub>2</sub> to substrate of 1.05:1, a liquid hourly space velocity of 0.6 h<sup>–1</sup>, and using a 30 wt % concentration of H<sub>2</sub>O<sub>2</sub> at a substrate concentration of 1 mol/L. The conversion rate was up to 99.5%, and the selectivity of DTD was 99.1%. To prevent hydrolysis of DTD, a continuous separation operation was initiated immediately after the completion of the reaction, and the yield of DTD reached 96%. The successful application of this process not only improves the production efficiency of DTD and reduces the production cost but also establishes the foundation for the industrialized continuous production of DTD.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"30 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.4c00482","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
1,3,2-Dioxathiolane 2,2-dioxide (DTD) plays a significant role as an electrolyte additive in lithium-ion batteries. It can enhance battery performance, stability, and safety. Additionally, it is a commonly used hydroxylation reagent in organic chemistry. This paper presents a highly efficient, safe preparation, and environmentally friendly continuous DTD synthesis process that does not require catalyst separation. A fixed-bed reactor was constructed with spherical TS-1 as the catalyst and H2O2 as the oxidizer. Under optimized reaction conditions, efficient oxidation of ethylene sulfite (ES) was achieved using dimethyl carbonate as a solvent. The process involved controlling the reaction temperatures at gradients of 10 and 5 °C, respectively, maintaining a molar ratio of H2O2 to substrate of 1.05:1, a liquid hourly space velocity of 0.6 h–1, and using a 30 wt % concentration of H2O2 at a substrate concentration of 1 mol/L. The conversion rate was up to 99.5%, and the selectivity of DTD was 99.1%. To prevent hydrolysis of DTD, a continuous separation operation was initiated immediately after the completion of the reaction, and the yield of DTD reached 96%. The successful application of this process not only improves the production efficiency of DTD and reduces the production cost but also establishes the foundation for the industrialized continuous production of DTD.
期刊介绍:
The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.