Solvent-derived organic-rich SEI enables capacity enhancement for low-temperature lithium metal batteries

IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2025-04-16 DOI:10.1016/j.joule.2025.101823
Xiangkai Yin , Boyang Li , Hong Liu , Bo Wen , Jia Liu , Meiqi Bai , Yanan Zhang , Yuanjun Zhao , Xiaofeng Cui , Yaqiong Su , Guoxin Gao , Shujiang Ding , Wei Yu
{"title":"Solvent-derived organic-rich SEI enables capacity enhancement for low-temperature lithium metal batteries","authors":"Xiangkai Yin ,&nbsp;Boyang Li ,&nbsp;Hong Liu ,&nbsp;Bo Wen ,&nbsp;Jia Liu ,&nbsp;Meiqi Bai ,&nbsp;Yanan Zhang ,&nbsp;Yuanjun Zhao ,&nbsp;Xiaofeng Cui ,&nbsp;Yaqiong Su ,&nbsp;Guoxin Gao ,&nbsp;Shujiang Ding ,&nbsp;Wei Yu","doi":"10.1016/j.joule.2025.101823","DOIUrl":null,"url":null,"abstract":"<div><div>Anion-derived inorganic-rich solid electrolyte interface (SEI) is generally considered beneficial for lithium metal batteries (LMBs). Surprisingly, an anomaly was observed in this study that the inorganic-rich SEI can cause severe capacity degradation in low-temperature (LT) LMBs due to sluggish interfacial transport kinetics. Herein, the solvent-derived organic-rich SEI was demonstrated to exhibit lower interfacial impedance due to weak interfacial force and rapid pore diffusion mechanism. As a proof of concept, an organosilicon electrolyte, combined with LT formation cycling, successfully constructed solvent-derived SEI with a 16.51-fold increase in organic components, ultimately resulting in a 22.5% capacity enhancement of LMBs at −40°C. Consequently, Li||NCM811 cells miraculously maintained discharge functionality even at −114.05°C, and 1.2 Ah pouch cells maintained 92.1% capacity retention over 50 cycles at −20°C with the lean electrolyte (2.5 mL Ah<sup>−1</sup>). This strategy of increasing battery capacity through organic-rich SEI opens up a new era of research on LT batteries.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 4","pages":"Article 101823"},"PeriodicalIF":35.4000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435125000042","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Anion-derived inorganic-rich solid electrolyte interface (SEI) is generally considered beneficial for lithium metal batteries (LMBs). Surprisingly, an anomaly was observed in this study that the inorganic-rich SEI can cause severe capacity degradation in low-temperature (LT) LMBs due to sluggish interfacial transport kinetics. Herein, the solvent-derived organic-rich SEI was demonstrated to exhibit lower interfacial impedance due to weak interfacial force and rapid pore diffusion mechanism. As a proof of concept, an organosilicon electrolyte, combined with LT formation cycling, successfully constructed solvent-derived SEI with a 16.51-fold increase in organic components, ultimately resulting in a 22.5% capacity enhancement of LMBs at −40°C. Consequently, Li||NCM811 cells miraculously maintained discharge functionality even at −114.05°C, and 1.2 Ah pouch cells maintained 92.1% capacity retention over 50 cycles at −20°C with the lean electrolyte (2.5 mL Ah−1). This strategy of increasing battery capacity through organic-rich SEI opens up a new era of research on LT batteries.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
溶剂衍生的富有机SEI能够增强低温锂金属电池的容量
阴离子衍生的富无机固体电解质界面(SEI)通常被认为对锂金属电池(lbs)有益。令人惊讶的是,本研究中发现了一个异常现象,即由于界面传输动力学缓慢,富无机SEI会导致低温(LT) lmb的严重容量下降。本研究表明,溶剂衍生的富有机SEI由于界面力较弱和快速的孔隙扩散机制而具有较低的界面阻抗。作为概念验证,有机硅电解质结合LT形成循环,成功构建了溶剂衍生的SEI,有机成分增加了16.51倍,最终使lmb在- 40°C下的容量提高了22.5%。因此,Li||NCM811电池即使在- 114.05°C也能奇迹般地保持放电功能,1.2 Ah袋电池在- 20°C的稀薄电解质(2.5 mL Ah - 1)下,在50个循环中保持92.1%的容量保留。这种通过富含有机物的SEI来增加电池容量的策略开启了LT电池研究的新时代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
Machine learning-driven interface material design for high-performance perovskite solar cells with scalability and band-gap universality Roadmap to 100 GWDC: Scientific and supply chain challenges for CdTe photovoltaics Boosting ionic conductivity of fluoride electrolytes by polyanion coordination chemistry enabling 5 V-Class all-solid-state batteries Energy innovation in the US buildings sector: Setting the stage and mapping the future Material insights and challenges for organic photovoltaics based on non-fullerene acceptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1