Metal Ion-Based Chemical Coordination Amplification: A Chromophore In Situ Deposition Strategy for Visual Sensitivity-Enhanced Lateral Flow Immunochromatography Assays
Jiaren Song, Changdi Xu, Siqi Zeng, Wanchao Zuo, Qing Yang, Qiannan Hu, Xiangming Meng, Jinjun Ye, Jianjun Dai, Yanmin Ju
{"title":"Metal Ion-Based Chemical Coordination Amplification: A Chromophore In Situ Deposition Strategy for Visual Sensitivity-Enhanced Lateral Flow Immunochromatography Assays","authors":"Jiaren Song, Changdi Xu, Siqi Zeng, Wanchao Zuo, Qing Yang, Qiannan Hu, Xiangming Meng, Jinjun Ye, Jianjun Dai, Yanmin Ju","doi":"10.1021/acs.analchem.4c05781","DOIUrl":null,"url":null,"abstract":"Traditional lateral flow immunochromatography assays (LFIAs) have faced low sensitivity for trace detection due to the lack of colorimetric brightness. The current strategies to improve sensitivity commonly have the disadvantages of an uncontrollable enhancement process or high background interference, leading to huge obstacles for signal readout. Herein, an in situ metal ion-based chemical coordination amplification (MICCA) strategy has been reported. Metal ion clusters on metal–organic frameworks could coordinate with chromophores to produce colored complexes for visual signal enhancement. A Zr-based metal AIEgen framework (MAF) loaded with Prussian blue was chosen as the dual-mode signal tag for colorimetric and fluorescent readout. MAF could be employed as a grafting substrate to in situ deposit chromophores through the coordination with Zr<sup>4+</sup> clusters and arsenazo III. The process of MICCA was in situ, controllable, and free of background interference. For target cancer biomarker alpha-fetoprotein (AFP), the limit of detection (LOD) by the naked eye was 25 ng/mL, and the LODs of MICCA and fluorescence were 5 ng/mL, which was 5-fold decreased. Significantly, MICCA-LFIA could effectively differentiate between AFP-positive and AFP-negative clinical serum samples. The quantitative results were highly consistent with clinical results (<i>R</i><sup>2</sup> = 0.9927). This work explored the application of metal ion-based chemical coordination reactions in signal amplification strategies and provided ideas for high-sensitivity LFIA development.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"76 2 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05781","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional lateral flow immunochromatography assays (LFIAs) have faced low sensitivity for trace detection due to the lack of colorimetric brightness. The current strategies to improve sensitivity commonly have the disadvantages of an uncontrollable enhancement process or high background interference, leading to huge obstacles for signal readout. Herein, an in situ metal ion-based chemical coordination amplification (MICCA) strategy has been reported. Metal ion clusters on metal–organic frameworks could coordinate with chromophores to produce colored complexes for visual signal enhancement. A Zr-based metal AIEgen framework (MAF) loaded with Prussian blue was chosen as the dual-mode signal tag for colorimetric and fluorescent readout. MAF could be employed as a grafting substrate to in situ deposit chromophores through the coordination with Zr4+ clusters and arsenazo III. The process of MICCA was in situ, controllable, and free of background interference. For target cancer biomarker alpha-fetoprotein (AFP), the limit of detection (LOD) by the naked eye was 25 ng/mL, and the LODs of MICCA and fluorescence were 5 ng/mL, which was 5-fold decreased. Significantly, MICCA-LFIA could effectively differentiate between AFP-positive and AFP-negative clinical serum samples. The quantitative results were highly consistent with clinical results (R2 = 0.9927). This work explored the application of metal ion-based chemical coordination reactions in signal amplification strategies and provided ideas for high-sensitivity LFIA development.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.