Hui Huang, Xiao Shi, Weiwei Ni, Wenhui Zhang, Ligong Ji, Jin Wu, Zhenwei Yuan, Yanlin Ma, Callum Stewart, Kin Lam Fok, Linxian Li, Jinsong Han
{"title":"Combinatorial Library-Screened Array for Rapid Clinical Sperm Quality Assessment","authors":"Hui Huang, Xiao Shi, Weiwei Ni, Wenhui Zhang, Ligong Ji, Jin Wu, Zhenwei Yuan, Yanlin Ma, Callum Stewart, Kin Lam Fok, Linxian Li, Jinsong Han","doi":"10.1021/acs.analchem.4c06952","DOIUrl":null,"url":null,"abstract":"Nonspecific interactions are ubiquitous and important in biology; however, they are rarely valued or employed in the field of clinical disease diagnosis. Relying on nonspecific cross-interactions, sensor arrays have shown great potential in distinguishing mixtures or nuanced compounds. However, developing generic strategies for constructing effective arrays tailored to compositionally complicated and highly individualized clinical biospecimens remains challenging. Here, we introduce a combinatorial chemistry-screened array strategy, leveraging four-component Ugi reactions to achieve the rapid synthesis of hundreds of structurally diverse sensing elements. Moreover, effective sensor arrays can thus be built by rapidly screening sensors against diverse analytes. Next, we demonstrate the practical applicability of this array by clinical sperm quality assessment, given the current lack of well-established clinical rapid detection techniques. A library of 192 structurally diverse sensor elements was synthesized. Following screening, a pruned 14-element array was successfully constructed, achieving 94.2% accuracy in distinguishing between healthy individuals and four types of abnormal sperm samples from patients within 1 min. This universal strategy avoids complex sensor design and greatly improves the efficiency of sensor array construction, offering a new way of designing effective arrays.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"12 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06952","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nonspecific interactions are ubiquitous and important in biology; however, they are rarely valued or employed in the field of clinical disease diagnosis. Relying on nonspecific cross-interactions, sensor arrays have shown great potential in distinguishing mixtures or nuanced compounds. However, developing generic strategies for constructing effective arrays tailored to compositionally complicated and highly individualized clinical biospecimens remains challenging. Here, we introduce a combinatorial chemistry-screened array strategy, leveraging four-component Ugi reactions to achieve the rapid synthesis of hundreds of structurally diverse sensing elements. Moreover, effective sensor arrays can thus be built by rapidly screening sensors against diverse analytes. Next, we demonstrate the practical applicability of this array by clinical sperm quality assessment, given the current lack of well-established clinical rapid detection techniques. A library of 192 structurally diverse sensor elements was synthesized. Following screening, a pruned 14-element array was successfully constructed, achieving 94.2% accuracy in distinguishing between healthy individuals and four types of abnormal sperm samples from patients within 1 min. This universal strategy avoids complex sensor design and greatly improves the efficiency of sensor array construction, offering a new way of designing effective arrays.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.