{"title":"Neural Networks for cosmological model selection and feature importance using Cosmic Microwave Background data","authors":"I. Ocampo, G. Cañas-Herrera and S. Nesseris","doi":"10.1088/1475-7516/2025/02/004","DOIUrl":null,"url":null,"abstract":"The measurements of the temperature and polarisation anisotropies of the Cosmic Microwave Background (CMB) by the ESA Planck mission have strongly supported the current concordance model of cosmology. However, the latest cosmological data release from ESA Planck mission still has a powerful potential to test new data science algorithms and inference techniques. In this paper, we use advanced Machine Learning (ML) algorithms, such as Neural Networks (NNs), to discern among different underlying cosmological models at the angular power spectra level, using both temperature and polarisation Planck 18 data. We test two different models beyond ΛCDM: a modified gravity model: the Hu-Sawicki model, and an alternative inflationary model: a feature-template in the primordial power spectrum. Furthermore, we also implemented an interpretability method based on SHAP values to evaluate the learning process and identify the most relevant elements that drive our architecture to certain outcomes. We find that our NN is able to distinguish between different angular power spectra successfully for both alternative models and ΛCDM. We conclude by explaining how archival scientific data has still a strong potential to test novel data science algorithms that are interesting for the next generation of cosmological experiments.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"61 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/02/004","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The measurements of the temperature and polarisation anisotropies of the Cosmic Microwave Background (CMB) by the ESA Planck mission have strongly supported the current concordance model of cosmology. However, the latest cosmological data release from ESA Planck mission still has a powerful potential to test new data science algorithms and inference techniques. In this paper, we use advanced Machine Learning (ML) algorithms, such as Neural Networks (NNs), to discern among different underlying cosmological models at the angular power spectra level, using both temperature and polarisation Planck 18 data. We test two different models beyond ΛCDM: a modified gravity model: the Hu-Sawicki model, and an alternative inflationary model: a feature-template in the primordial power spectrum. Furthermore, we also implemented an interpretability method based on SHAP values to evaluate the learning process and identify the most relevant elements that drive our architecture to certain outcomes. We find that our NN is able to distinguish between different angular power spectra successfully for both alternative models and ΛCDM. We conclude by explaining how archival scientific data has still a strong potential to test novel data science algorithms that are interesting for the next generation of cosmological experiments.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.