Qing Song, Haijun Gao, Lin Cheng, Zihan Xiao, Deli Li, Yue Wang, Meizhen Xie, Nathan A. Fuller, Mengfan Zhu
{"title":"Surface Nanostructure Fabrication by Initiated Chemical Vapor Deposition and Its Combined Technologies","authors":"Qing Song, Haijun Gao, Lin Cheng, Zihan Xiao, Deli Li, Yue Wang, Meizhen Xie, Nathan A. Fuller, Mengfan Zhu","doi":"10.1021/acsmacrolett.4c00793","DOIUrl":null,"url":null,"abstract":"Initiated chemical vapor deposition (iCVD) is a versatile technique that enables the direct growth of nanostructures and surface modification of such structures. Unlike traditional CVD methods, iCVD operates under mild conditions, allowing for damage-free processing of delicate substrates. It can produce highly uniform polymer layers, with thicknesses ranging from over 15 μm to sub-10 nm, conformally coating intricate geometries. The broad range of polymer compositions achievable with iCVD offers precise control of surface chemistry. In this Viewpoint, we present iCVD’s mechanisms and the principles for controlling the composition and morphology of deposited layers. We summarize various surface nanostructures including nanodomes, nanocones, nanowrinkles, nanoparticles, and nanoporous structures that are directly fabricated using iCVD. We also demonstrate the integration of iCVD with other advanced methods, such as photo, soft, and nanoimprint lithography; template-assisted growth; and thermal CVD, to leverage the advantages of multiple methods and overcome individual limitations in nanofabrication. Through these combined strategies, we show the iCVD’s potential for creating multifunctional nanostructures with broad applications across engineering and biomedical fields.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"12 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmacrolett.4c00793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Initiated chemical vapor deposition (iCVD) is a versatile technique that enables the direct growth of nanostructures and surface modification of such structures. Unlike traditional CVD methods, iCVD operates under mild conditions, allowing for damage-free processing of delicate substrates. It can produce highly uniform polymer layers, with thicknesses ranging from over 15 μm to sub-10 nm, conformally coating intricate geometries. The broad range of polymer compositions achievable with iCVD offers precise control of surface chemistry. In this Viewpoint, we present iCVD’s mechanisms and the principles for controlling the composition and morphology of deposited layers. We summarize various surface nanostructures including nanodomes, nanocones, nanowrinkles, nanoparticles, and nanoporous structures that are directly fabricated using iCVD. We also demonstrate the integration of iCVD with other advanced methods, such as photo, soft, and nanoimprint lithography; template-assisted growth; and thermal CVD, to leverage the advantages of multiple methods and overcome individual limitations in nanofabrication. Through these combined strategies, we show the iCVD’s potential for creating multifunctional nanostructures with broad applications across engineering and biomedical fields.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.