In vitro fermentation characteristics of dietary fibers using fecal inoculum from dogs consuming commercial or grain kefir

IF 2.7 2区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE Journal of animal science Pub Date : 2025-01-31 DOI:10.1093/jas/skaf022
Breanna N Metras, Patricia M Oba, Dalton A Holt, Laura L Bauer, Michael J Miller, Ryan N Dilger, Kelly S Swanson
{"title":"In vitro fermentation characteristics of dietary fibers using fecal inoculum from dogs consuming commercial or grain kefir","authors":"Breanna N Metras, Patricia M Oba, Dalton A Holt, Laura L Bauer, Michael J Miller, Ryan N Dilger, Kelly S Swanson","doi":"10.1093/jas/skaf022","DOIUrl":null,"url":null,"abstract":"Traditional grain kefir is produced from the fermentation of milk with yeast- and bacteria-containing cultures. To maintain consistency and adhere to food safety guidelines, commercial kefir products are based on starter bacterial cultures. Bacterial profiles of starter vs. grain kefirs differ, and their influence on health effects is unknown. Our objectives were to determine the in vitro fermentation characteristics of common dietary fibers using fecal inoculum from dogs supplemented with kefir or kefir bacterial culture as inoculum. Healthy adult dogs were allotted to one of 3 treatments and supplemented for 14 d (n=4/treatment): 1) 2% reduced-fat milk treated with lactase (CNTL), 2) starter kefir (S-Kefir), or 3) grain kefir (G-Kefir). After 14 d, fresh fecal samples were collected and frozen in a 20% glycerol solution. For the in vitro experiment, fecal samples were thawed, diluted in an anaerobic diluting solution, and used to inoculate tubes containing semi-defined medium and either cellulose (CEL), pectin (PC), beet pulp (BP), or chicory pulp (CP). Tubes were incubated for 0, 6, 12, or 18 h, with short-chain fatty acids (SCFA), pH, and microbiota measured at each time point. A second in vitro experiment was conducted using similar methods and measurements, but with S-Kefir and G-Kefir as inoculum sources. Effects of treatment (inoculum), time, and treatment*time interactions within fiber source were analyzed statistically using Mixed Models and repeated measures, with P<0.05 being significant. Using fecal inoculum, BP and PC were rapidly fermented, leading to large pH reductions, SCFA increases, and microbiota shifts. pH change was of greater (P<0.05) magnitude (PC) and higher (P<0.05) kinetic rate (CP) when using feces from dogs fed S-Kefir or G-Kefir than controls. Butyrate increases were greater (P<0.05) in tubes inoculated with G-Kefir feces than in S-Kefir or control feces. When PC and BP were fermented, tubes with S-Kefir feces had greater (P<0.05) acetate, propionate, and total SCFA increases than G-Kefir or control feces. Fermentations were slower when using kefir cultures as inoculum, but some differences were noted. Bacterial beta diversity and relative abundances shifted over time within each substrate and were unique to inoculum source. Our data suggest that the activity of kefir bacterial populations differs, and that kefir consumption changes the abundance and activity of the fecal microbiota of dogs, justifying in vivo investigation.","PeriodicalId":14895,"journal":{"name":"Journal of animal science","volume":"7 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of animal science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jas/skaf022","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional grain kefir is produced from the fermentation of milk with yeast- and bacteria-containing cultures. To maintain consistency and adhere to food safety guidelines, commercial kefir products are based on starter bacterial cultures. Bacterial profiles of starter vs. grain kefirs differ, and their influence on health effects is unknown. Our objectives were to determine the in vitro fermentation characteristics of common dietary fibers using fecal inoculum from dogs supplemented with kefir or kefir bacterial culture as inoculum. Healthy adult dogs were allotted to one of 3 treatments and supplemented for 14 d (n=4/treatment): 1) 2% reduced-fat milk treated with lactase (CNTL), 2) starter kefir (S-Kefir), or 3) grain kefir (G-Kefir). After 14 d, fresh fecal samples were collected and frozen in a 20% glycerol solution. For the in vitro experiment, fecal samples were thawed, diluted in an anaerobic diluting solution, and used to inoculate tubes containing semi-defined medium and either cellulose (CEL), pectin (PC), beet pulp (BP), or chicory pulp (CP). Tubes were incubated for 0, 6, 12, or 18 h, with short-chain fatty acids (SCFA), pH, and microbiota measured at each time point. A second in vitro experiment was conducted using similar methods and measurements, but with S-Kefir and G-Kefir as inoculum sources. Effects of treatment (inoculum), time, and treatment*time interactions within fiber source were analyzed statistically using Mixed Models and repeated measures, with P<0.05 being significant. Using fecal inoculum, BP and PC were rapidly fermented, leading to large pH reductions, SCFA increases, and microbiota shifts. pH change was of greater (P<0.05) magnitude (PC) and higher (P<0.05) kinetic rate (CP) when using feces from dogs fed S-Kefir or G-Kefir than controls. Butyrate increases were greater (P<0.05) in tubes inoculated with G-Kefir feces than in S-Kefir or control feces. When PC and BP were fermented, tubes with S-Kefir feces had greater (P<0.05) acetate, propionate, and total SCFA increases than G-Kefir or control feces. Fermentations were slower when using kefir cultures as inoculum, but some differences were noted. Bacterial beta diversity and relative abundances shifted over time within each substrate and were unique to inoculum source. Our data suggest that the activity of kefir bacterial populations differs, and that kefir consumption changes the abundance and activity of the fecal microbiota of dogs, justifying in vivo investigation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of animal science
Journal of animal science 农林科学-奶制品与动物科学
CiteScore
4.80
自引率
12.10%
发文量
1589
审稿时长
3 months
期刊介绍: The Journal of Animal Science (JAS) is the premier journal for animal science and serves as the leading source of new knowledge and perspective in this area. JAS publishes more than 500 fully reviewed research articles, invited reviews, technical notes, and letters to the editor each year. Articles published in JAS encompass a broad range of research topics in animal production and fundamental aspects of genetics, nutrition, physiology, and preparation and utilization of animal products. Articles typically report research with beef cattle, companion animals, goats, horses, pigs, and sheep; however, studies involving other farm animals, aquatic and wildlife species, and laboratory animal species that address fundamental questions related to livestock and companion animal biology will be considered for publication.
期刊最新文献
Effects of increasing dietary zinc oxide levels on the hepatic mitochondrial energy metabolism, oxidative balance and antioxidant system in weaned piglets. Exploring the effects of dietary lysine and tryptophan on the social behaviour of pigs. Effects of dietary supplementation with linseed oil, Ascophyllum nodosum or treated A. nodosum on animal performance, gaseous emissions, ruminal fermentation and microbiota, and meat quality in growing dairy beef bulls Prolactin and Heat Stress; focus on Domestic Ruminants. Quantitative differences in rumen epithelium proteins and detection of lysine acetylation in lambs fed a low or high metabolizable energy diet.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1