Temperature-Dependent Water Oxidation Kinetics: Implications and Insights

IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Central Science Pub Date : 2024-12-16 DOI:10.1021/acscentsci.4c0141510.1021/acscentsci.4c01415
Tianying Liu, Pan Wang, Wei Li, David Z. Wang, Damith D. Lekamge, Boqiang Chen, Frances A. Houle, Matthias M. Waegele* and Dunwei Wang*, 
{"title":"Temperature-Dependent Water Oxidation Kinetics: Implications and Insights","authors":"Tianying Liu,&nbsp;Pan Wang,&nbsp;Wei Li,&nbsp;David Z. Wang,&nbsp;Damith D. Lekamge,&nbsp;Boqiang Chen,&nbsp;Frances A. Houle,&nbsp;Matthias M. Waegele* and Dunwei Wang*,&nbsp;","doi":"10.1021/acscentsci.4c0141510.1021/acscentsci.4c01415","DOIUrl":null,"url":null,"abstract":"<p >As a vital process for solar fuel synthesis, water oxidation remains a challenging reaction to perform using durable and cost-effective systems. Despite decades of intense research, our understanding of the detailed processes involved is still limited, particularly under photochemical conditions. Recent research has shown that the overall kinetics of water oxidation by a molecular dyad depends on the coordination between photocharge generation and the subsequent chemical steps. This work explores similar effects of heterogeneous solar water oxidation systems. By varying a key variable, the reaction temperature, we discovered distinctly different behaviors on two model systems, TiO<sub>2</sub> and Fe<sub>2</sub>O<sub>3</sub>. TiO<sub>2</sub> exhibited a monotonically increasing water oxidation performance with rising temperature across the entire applied potential range, between 0.1 and 1.5 V vs the reversible hydrogen electrode (RHE). In contrast, Fe<sub>2</sub>O<sub>3</sub> showed increased performance with increasing temperature at high applied potentials (&gt;1.2 V vs RHE) but decreased performance at low applied potentials (&lt;1.2 V vs RHE). This decrease in performance with temperature on Fe<sub>2</sub>O<sub>3</sub> was attributed to an increased level of electron–hole recombination, as confirmed by intensity-modulated photocurrent spectroscopy (IMPS). The origin of the differing temperature dependences on TiO<sub>2</sub> and Fe<sub>2</sub>O<sub>3</sub> was further ascribed to their different surface chemical kinetics. These results highlight the chemical nature of charge recombination in photoelectrochemical (PEC) systems, where surface electrons recombine with holes stored in surface chemical species. They also indicate that PEC kinetics are not constrained by a single rate-determining chemical step, highlighting the importance of an integrated approach to studying such systems. Moreover, the results suggest that for practical solar water splitting devices higher temperatures are not always beneficial for reaction rates, especially under low driving force conditions.</p><p >Varying temperature measurements reveal that the photophysical processes and the subsequent chemical steps exhibit mutual influence on each other in photoelectrochemical water oxidation reactions.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 1","pages":"91–97 91–97"},"PeriodicalIF":12.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c01415","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.4c01415","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As a vital process for solar fuel synthesis, water oxidation remains a challenging reaction to perform using durable and cost-effective systems. Despite decades of intense research, our understanding of the detailed processes involved is still limited, particularly under photochemical conditions. Recent research has shown that the overall kinetics of water oxidation by a molecular dyad depends on the coordination between photocharge generation and the subsequent chemical steps. This work explores similar effects of heterogeneous solar water oxidation systems. By varying a key variable, the reaction temperature, we discovered distinctly different behaviors on two model systems, TiO2 and Fe2O3. TiO2 exhibited a monotonically increasing water oxidation performance with rising temperature across the entire applied potential range, between 0.1 and 1.5 V vs the reversible hydrogen electrode (RHE). In contrast, Fe2O3 showed increased performance with increasing temperature at high applied potentials (>1.2 V vs RHE) but decreased performance at low applied potentials (<1.2 V vs RHE). This decrease in performance with temperature on Fe2O3 was attributed to an increased level of electron–hole recombination, as confirmed by intensity-modulated photocurrent spectroscopy (IMPS). The origin of the differing temperature dependences on TiO2 and Fe2O3 was further ascribed to their different surface chemical kinetics. These results highlight the chemical nature of charge recombination in photoelectrochemical (PEC) systems, where surface electrons recombine with holes stored in surface chemical species. They also indicate that PEC kinetics are not constrained by a single rate-determining chemical step, highlighting the importance of an integrated approach to studying such systems. Moreover, the results suggest that for practical solar water splitting devices higher temperatures are not always beneficial for reaction rates, especially under low driving force conditions.

Varying temperature measurements reveal that the photophysical processes and the subsequent chemical steps exhibit mutual influence on each other in photoelectrochemical water oxidation reactions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Measuring the Elusive Half-Life of Samarium-146. Measuring the Elusive Half-Life of Samarium-146 Strand-Swapped SH3 Domain Dimer with Superoxide Dismutase Activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1