Haloacetonitriles Induce Structure-Related Cellular Toxicity Through Distinct Proteome Thiol Reaction Mechanisms

IF 6.7 Q1 ENGINEERING, ENVIRONMENTAL ACS Environmental Au Pub Date : 2024-12-03 DOI:10.1021/acsenvironau.4c0006810.1021/acsenvironau.4c00068
Kirsten Yeung, Linna Xie, Pranav Nair and Hui Peng*, 
{"title":"Haloacetonitriles Induce Structure-Related Cellular Toxicity Through Distinct Proteome Thiol Reaction Mechanisms","authors":"Kirsten Yeung,&nbsp;Linna Xie,&nbsp;Pranav Nair and Hui Peng*,&nbsp;","doi":"10.1021/acsenvironau.4c0006810.1021/acsenvironau.4c00068","DOIUrl":null,"url":null,"abstract":"<p >Haloacetonitriles (HANs) are a class of toxic drinking water disinfection byproducts (DBPs). However, the toxicity mechanisms of HANs remain unclear. We herein investigated the structure-related in vitro toxicity of 6 representative HANs by utilizing complementary bioanalytical approaches. Dibromoacetonitrile (DBAN) displayed strong cytotoxicity and Nrf2 oxidative stress responses, followed by monohalogenated HANs (monoHANs) while other polyhalogenated HANs (polyHANs) exhibited little toxicity. Activity based protein profiling (ABPP) revealed that toxic HANs adduct to human proteome thiols, supporting thiol reactivity as the primary toxicity mechanism for HANs. By using glutathione (GSH) as a thiol surrogate, monoHANs reacted with GSH via S<sub>N</sub>2 while polyHANs reacted through ultrafast addition reactions. In contrast, DBAN generated an unexpected fully debrominated product and glutathione disulfide (GSSG). The unique reaction of DBAN with GSH was found to be mediated by radicals which was supported by electron paramagnetic resonance (EPR) spectroscopy and by radical trapping reagent reaction quenching. Shotgun proteomics further revealed that monoHANs and DBAN adducted to proteome thiols in live cells forming dehalogenated adducts. Multiple antioxidant proteins, SOD1, CSTB, and GAPDH, were adducted by toxic HANs at specific cysteine residues. This study highlights the structurally selective toxicity of HANs in human cells, which are attributed to their distinct reactions with proteome thiols.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"5 1","pages":"101–113 101–113"},"PeriodicalIF":6.7000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.4c00068","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Environmental Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenvironau.4c00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Haloacetonitriles (HANs) are a class of toxic drinking water disinfection byproducts (DBPs). However, the toxicity mechanisms of HANs remain unclear. We herein investigated the structure-related in vitro toxicity of 6 representative HANs by utilizing complementary bioanalytical approaches. Dibromoacetonitrile (DBAN) displayed strong cytotoxicity and Nrf2 oxidative stress responses, followed by monohalogenated HANs (monoHANs) while other polyhalogenated HANs (polyHANs) exhibited little toxicity. Activity based protein profiling (ABPP) revealed that toxic HANs adduct to human proteome thiols, supporting thiol reactivity as the primary toxicity mechanism for HANs. By using glutathione (GSH) as a thiol surrogate, monoHANs reacted with GSH via SN2 while polyHANs reacted through ultrafast addition reactions. In contrast, DBAN generated an unexpected fully debrominated product and glutathione disulfide (GSSG). The unique reaction of DBAN with GSH was found to be mediated by radicals which was supported by electron paramagnetic resonance (EPR) spectroscopy and by radical trapping reagent reaction quenching. Shotgun proteomics further revealed that monoHANs and DBAN adducted to proteome thiols in live cells forming dehalogenated adducts. Multiple antioxidant proteins, SOD1, CSTB, and GAPDH, were adducted by toxic HANs at specific cysteine residues. This study highlights the structurally selective toxicity of HANs in human cells, which are attributed to their distinct reactions with proteome thiols.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Environmental Au
ACS Environmental Au 环境科学-
CiteScore
7.10
自引率
0.00%
发文量
0
期刊介绍: ACS Environmental Au is an open access journal which publishes experimental research and theoretical results in all aspects of environmental science and technology both pure and applied. Short letters comprehensive articles reviews and perspectives are welcome in the following areas:Alternative EnergyAnthropogenic Impacts on Atmosphere Soil or WaterBiogeochemical CyclingBiomass or Wastes as ResourcesContaminants in Aquatic and Terrestrial EnvironmentsEnvironmental Data ScienceEcotoxicology and Public HealthEnergy and ClimateEnvironmental Modeling Processes and Measurement Methods and TechnologiesEnvironmental Nanotechnology and BiotechnologyGreen ChemistryGreen Manufacturing and EngineeringRisk assessment Regulatory Frameworks and Life-Cycle AssessmentsTreatment and Resource Recovery and Waste Management
期刊最新文献
Issue Editorial Masthead Issue Publication Information Machine Learning Reveals Signatures of Promiscuous Microbial Amidases for Micropollutant Biotransformations. Machine Learning Reveals Signatures of Promiscuous Microbial Amidases for Micropollutant Biotransformations Evaluating GPT Models for Automated Literature Screening in Wastewater-Based Epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1