Leveraging Radiofrequency Identification Success Beyond Hazardous Material Inventory Management at a National Laboratory

Armando R. Diaz De Jesus, Nahomy Hernandez Pagan, Giovanni Andre Cartagena Marrero, Diego Merchan Rueda, Bernd Werres, Eduardo I. Ortiz-Rivera, Luis Traverso Aviles, Diego Andres Aponte Roa and Raul Baez Lara Jr.*, 
{"title":"Leveraging Radiofrequency Identification Success Beyond Hazardous Material Inventory Management at a National Laboratory","authors":"Armando R. Diaz De Jesus,&nbsp;Nahomy Hernandez Pagan,&nbsp;Giovanni Andre Cartagena Marrero,&nbsp;Diego Merchan Rueda,&nbsp;Bernd Werres,&nbsp;Eduardo I. Ortiz-Rivera,&nbsp;Luis Traverso Aviles,&nbsp;Diego Andres Aponte Roa and Raul Baez Lara Jr.*,&nbsp;","doi":"10.1021/acs.chas.4c0010410.1021/acs.chas.4c00104","DOIUrl":null,"url":null,"abstract":"<p >Effective inventory management can be overshadowed by conflicting priorities in organizational procedures, particularly in research-focused institutions such as national laboratories that handle expensive, delicate, and hazardous materials. This study investigated the potential of radiofrequency identification (RFID) technology, currently used for hazardous chemical inventory, in applications with higher metal interference and absorption, specifically pressure release device (PRD) compliance and nuclear container management, at Lawrence Livermore National Laboratory (LLNL). This study was done to document best practices to enhance inventory identification speeds for inventory reconciliation and inventory recall and to explore optimal configurations for RFID implementation compared to traditional manual methods of equipment management. Tests were conducted to determine the ideal RFID tag orientation (read at angles of 0°, 90°, and 270°), various container layouts (linear, separated, curved, operational), and ID methods such as manual, barcode, and RFID performing three trials per method per orientation. Results indicated that 0° was the optimal read angle for minimizing metallic interference, and the operational and curved arrangements significantly outperformed the linear and separated configurations in read speed. 3D printed mounts were developed and tested, increasing the read range of the RFID reader by up to 235% in cases of high metallic interference. The RFID technology demonstrated an average speed increase of 65% over a simplified manual identification, which supports the conclusion that RFID is a more efficient method for large hazardous inventory management and equipment reconciliation. Additionally, capturing meta-data, such as location and date, can be used to query for inventory recall and automated updating of record information.</p>","PeriodicalId":73648,"journal":{"name":"Journal of chemical health & safety","volume":"32 1","pages":"30–38 30–38"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chemical health & safety","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chas.4c00104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Effective inventory management can be overshadowed by conflicting priorities in organizational procedures, particularly in research-focused institutions such as national laboratories that handle expensive, delicate, and hazardous materials. This study investigated the potential of radiofrequency identification (RFID) technology, currently used for hazardous chemical inventory, in applications with higher metal interference and absorption, specifically pressure release device (PRD) compliance and nuclear container management, at Lawrence Livermore National Laboratory (LLNL). This study was done to document best practices to enhance inventory identification speeds for inventory reconciliation and inventory recall and to explore optimal configurations for RFID implementation compared to traditional manual methods of equipment management. Tests were conducted to determine the ideal RFID tag orientation (read at angles of 0°, 90°, and 270°), various container layouts (linear, separated, curved, operational), and ID methods such as manual, barcode, and RFID performing three trials per method per orientation. Results indicated that 0° was the optimal read angle for minimizing metallic interference, and the operational and curved arrangements significantly outperformed the linear and separated configurations in read speed. 3D printed mounts were developed and tested, increasing the read range of the RFID reader by up to 235% in cases of high metallic interference. The RFID technology demonstrated an average speed increase of 65% over a simplified manual identification, which supports the conclusion that RFID is a more efficient method for large hazardous inventory management and equipment reconciliation. Additionally, capturing meta-data, such as location and date, can be used to query for inventory recall and automated updating of record information.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Issue Editorial Masthead Issue Publication Information A Call for Papers “Chemical Safety in Universities: Legally Enforced vs Culturally Embraced” Leveraging Radiofrequency Identification Success Beyond Hazardous Material Inventory Management at a National Laboratory The Gist of the List
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1