Mihir Parekh, Nawraj Sapkota, Brooke Henry, Matthew Everette, Ling Fan, Bingan Lu, Ming Hu, Christopher Sutton and Apparao M. Rao*,
{"title":"Identifying Key Parameters for Mixed Organic Electrolytes for Lithium–Sulfur Battery","authors":"Mihir Parekh, Nawraj Sapkota, Brooke Henry, Matthew Everette, Ling Fan, Bingan Lu, Ming Hu, Christopher Sutton and Apparao M. Rao*, ","doi":"10.1021/acsaem.4c0243510.1021/acsaem.4c02435","DOIUrl":null,"url":null,"abstract":"<p >Engineered electrolytes are critical for high-performance lithium–sulfur batteries (LSBs). Present electrolyte selection for simultaneously forming a stable bilateral solid–electrolyte interface (SEI) on both electrodes is largely heuristic. Although the dielectric constant, viscosity, dipole moment, donor number, and orbital energy levels have all been used for electrolyte screening, their effectiveness has not been systematically studied. Here, the effectiveness of these parameters was investigated using a key metric of battery performance. Based on 51 mixed electrolytes investigated in this study, the enhanced stability of LSBs is attributed to the mixed electrolytes’ high dielectric constant (ε > 35), which ensures the separation of the LiTFSI salt ions and potentially reduces dendrite growth. However, 3 other high dielectric (ε > 35) mixed electrolytes based on diglyme exhibited a % drop of > ± 1.4%, which is ∼2 times larger than the % drop exhibited by batteries with high dielectric (ε > 35) compositions devoid of diglyme. Classical molecular dynamics indicated the presence of large diglyme molecules in the solvation shell, causing a ∼30% reduction in diffusivity and adversely affecting battery performance. This study indicates that a high dielectric constant (ε > 35) along with the absence of large molecules in the solvation shell are good criteria for LSB mixed electrolyte selection.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 2","pages":"903–911 903–911"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02435","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Engineered electrolytes are critical for high-performance lithium–sulfur batteries (LSBs). Present electrolyte selection for simultaneously forming a stable bilateral solid–electrolyte interface (SEI) on both electrodes is largely heuristic. Although the dielectric constant, viscosity, dipole moment, donor number, and orbital energy levels have all been used for electrolyte screening, their effectiveness has not been systematically studied. Here, the effectiveness of these parameters was investigated using a key metric of battery performance. Based on 51 mixed electrolytes investigated in this study, the enhanced stability of LSBs is attributed to the mixed electrolytes’ high dielectric constant (ε > 35), which ensures the separation of the LiTFSI salt ions and potentially reduces dendrite growth. However, 3 other high dielectric (ε > 35) mixed electrolytes based on diglyme exhibited a % drop of > ± 1.4%, which is ∼2 times larger than the % drop exhibited by batteries with high dielectric (ε > 35) compositions devoid of diglyme. Classical molecular dynamics indicated the presence of large diglyme molecules in the solvation shell, causing a ∼30% reduction in diffusivity and adversely affecting battery performance. This study indicates that a high dielectric constant (ε > 35) along with the absence of large molecules in the solvation shell are good criteria for LSB mixed electrolyte selection.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.