Strategic Acyl Carrier Protein Engineering Enables Functional Type II Polyketide Synthase Reconstitution In Vitro

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Biology Pub Date : 2025-01-02 DOI:10.1021/acschembio.4c0067810.1021/acschembio.4c00678
Kevin Li, Yae In Cho*, Mai Anh Tran, Christoph Wiedemann, Shuaibing Zhang, Rebecca S. Koweek, Ngọc Khánh Hoàng, Grayson S. Hamrick, Margaret A. Bowen, Bashkim Kokona, Pierre Stallforth, Joris Beld, Ute A. Hellmich* and Louise K. Charkoudian*, 
{"title":"Strategic Acyl Carrier Protein Engineering Enables Functional Type II Polyketide Synthase Reconstitution In Vitro","authors":"Kevin Li,&nbsp;Yae In Cho*,&nbsp;Mai Anh Tran,&nbsp;Christoph Wiedemann,&nbsp;Shuaibing Zhang,&nbsp;Rebecca S. Koweek,&nbsp;Ngọc Khánh Hoàng,&nbsp;Grayson S. Hamrick,&nbsp;Margaret A. Bowen,&nbsp;Bashkim Kokona,&nbsp;Pierre Stallforth,&nbsp;Joris Beld,&nbsp;Ute A. Hellmich* and Louise K. Charkoudian*,&nbsp;","doi":"10.1021/acschembio.4c0067810.1021/acschembio.4c00678","DOIUrl":null,"url":null,"abstract":"<p >Microbial polyketides represent a structurally diverse class of secondary metabolites with medicinally relevant properties. Aromatic polyketides are produced by type II polyketide synthase (PKS) systems, each minimally composed of a ketosynthase-chain length factor (KS-CLF) and a phosphopantetheinylated acyl carrier protein (<i>holo</i>-ACP). Although type II PKSs are found throughout the bacterial kingdom, and despite their importance to strategic bioengineering, type II PKSs have not been well-studied <i>in vitro</i>. In cases where the KS-CLF can be accessed via <i>E. coli</i> heterologous expression, often the cognate ACPs are not activatable by the broad specificity <i>Bacillus subtilis</i> surfactin-producing phosphopantetheinyl transferase (PPTase) Sfp and, conversely, in systems where the ACP can be activated by Sfp, the corresponding KS-CLF is typically not readily obtained. Here, we report the high-yield heterologous expression of both cyanobacterial <i>Gloeocapsa</i> sp. PCC 7428 minimal type II PKS (gloPKS) components in <i>E. coli</i>, which allowed us to study this minimal type II PKS <i>in vitro</i>. Initially, neither the cognate PPTase nor Sfp converted gloACP to its active <i>holo</i> state. However, by examining sequence differences between Sfp-compatible and -incompatible ACPs, we identified two conserved residues in gloACP that, when mutated, enabled high-yield phosphopantetheinylation of gloACP by Sfp. Using analogous mutations, other previously Sfp-incompatible type II PKS ACPs from different bacterial phyla were also rendered activatable by Sfp. This demonstrates the generalizability of our approach and breaks down a longstanding barrier to type II PKS studies and the exploration of complex biosynthetic pathways.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":"20 1","pages":"197–207 197–207"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acschembio.4c00678","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acschembio.4c00678","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial polyketides represent a structurally diverse class of secondary metabolites with medicinally relevant properties. Aromatic polyketides are produced by type II polyketide synthase (PKS) systems, each minimally composed of a ketosynthase-chain length factor (KS-CLF) and a phosphopantetheinylated acyl carrier protein (holo-ACP). Although type II PKSs are found throughout the bacterial kingdom, and despite their importance to strategic bioengineering, type II PKSs have not been well-studied in vitro. In cases where the KS-CLF can be accessed via E. coli heterologous expression, often the cognate ACPs are not activatable by the broad specificity Bacillus subtilis surfactin-producing phosphopantetheinyl transferase (PPTase) Sfp and, conversely, in systems where the ACP can be activated by Sfp, the corresponding KS-CLF is typically not readily obtained. Here, we report the high-yield heterologous expression of both cyanobacterial Gloeocapsa sp. PCC 7428 minimal type II PKS (gloPKS) components in E. coli, which allowed us to study this minimal type II PKS in vitro. Initially, neither the cognate PPTase nor Sfp converted gloACP to its active holo state. However, by examining sequence differences between Sfp-compatible and -incompatible ACPs, we identified two conserved residues in gloACP that, when mutated, enabled high-yield phosphopantetheinylation of gloACP by Sfp. Using analogous mutations, other previously Sfp-incompatible type II PKS ACPs from different bacterial phyla were also rendered activatable by Sfp. This demonstrates the generalizability of our approach and breaks down a longstanding barrier to type II PKS studies and the exploration of complex biosynthetic pathways.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
期刊最新文献
Introducing Our Authors Issue Publication Information Issue Editorial Masthead Multi-TACs: Targeting Solid Tumors with Multiple Immune Cell Co-engagers. Amide Internucleoside Linkages Suppress the MicroRNA-like Off-Target Activity of Short Interfering RNA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1