Collagen Alpha 1(XI) Amino-Terminal Domain Modulates Type I Collagen Fibril Assembly

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry Biochemistry Pub Date : 2025-01-22 DOI:10.1021/acs.biochem.4c0043410.1021/acs.biochem.4c00434
Abu Sayeed Chowdhury,  and , Julia Thom Oxford*, 
{"title":"Collagen Alpha 1(XI) Amino-Terminal Domain Modulates Type I Collagen Fibril Assembly","authors":"Abu Sayeed Chowdhury,&nbsp; and ,&nbsp;Julia Thom Oxford*,&nbsp;","doi":"10.1021/acs.biochem.4c0043410.1021/acs.biochem.4c00434","DOIUrl":null,"url":null,"abstract":"<p >The amino-terminal domain of collagen α1(XI) plays a key role in controlling fibrillogenesis. However, the specific mechanisms through which various isoforms of collagen α1(XI) regulate this process are not fully understood. We measured the kinetics of collagen type I self-assembly in the presence of specific collagen α1(XI) isoforms. Molecular dynamics simulations, protein–protein docking studies, and molecular mechanics Poisson–Boltzmann surface area were utilized to understand the molecular mechanisms. In vitro, in silico, and thermodynamic studies demonstrated an isoform-specific effect on self-assembly kinetics. Our results indicate isoform-specific differences in the rate constants, activation energy, and free energy of binding. These differences may result from isoform-specific interaction dynamics and modulation of steric hindrance due to the chemically distinct variable regions. We show that isoform A interacts with collagen type I due in part to the acidic variable region, increasing the activation energy of fibril growth while decreasing the rate constant during the growth phase. In contrast, the basic variable region of isoform B may result in less steric hindrance than isoform A. Isoform 0 demonstrated the highest activation energy and the lowest rate constant during the growth phase. Although the presence of isoforms reduced the rate constants for fibril growth, an increase in total turbidity during the plateau phase was observed compared to controls. Overall, these results are consistent with collagen α1(XI) NTD isoforms facilitating fibrillogenesis by increasing the final yield by reducing the rate of the lag and/or growth phases, while extending the duration of the growth phase.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":"64 3","pages":"735–747 735–747"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.biochem.4c00434","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biochem.4c00434","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The amino-terminal domain of collagen α1(XI) plays a key role in controlling fibrillogenesis. However, the specific mechanisms through which various isoforms of collagen α1(XI) regulate this process are not fully understood. We measured the kinetics of collagen type I self-assembly in the presence of specific collagen α1(XI) isoforms. Molecular dynamics simulations, protein–protein docking studies, and molecular mechanics Poisson–Boltzmann surface area were utilized to understand the molecular mechanisms. In vitro, in silico, and thermodynamic studies demonstrated an isoform-specific effect on self-assembly kinetics. Our results indicate isoform-specific differences in the rate constants, activation energy, and free energy of binding. These differences may result from isoform-specific interaction dynamics and modulation of steric hindrance due to the chemically distinct variable regions. We show that isoform A interacts with collagen type I due in part to the acidic variable region, increasing the activation energy of fibril growth while decreasing the rate constant during the growth phase. In contrast, the basic variable region of isoform B may result in less steric hindrance than isoform A. Isoform 0 demonstrated the highest activation energy and the lowest rate constant during the growth phase. Although the presence of isoforms reduced the rate constants for fibril growth, an increase in total turbidity during the plateau phase was observed compared to controls. Overall, these results are consistent with collagen α1(XI) NTD isoforms facilitating fibrillogenesis by increasing the final yield by reducing the rate of the lag and/or growth phases, while extending the duration of the growth phase.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
期刊最新文献
Binding Sites of a PET Ligand in Tau Fibrils with the Alzheimer's Disease Fold from 19F and 13C Solid-State NMR. Mechanism of Annealing of Complementary DNA Strands by the Single-Stranded DNA Binding Protein of Bacteriophage T7. Specific Interaction between a Fluoroquinolone Derivative, KG022, and RNAs with a Single Bulge. Structure of the CD33 Receptor and Implications for the Siglec Family. Accessibility of Carboxypeptidase A-bound Zinc to Chelation Correlates with an Intermediate State in the Protein's Unfolding Pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1